The LuaTeX-ja package

The LuaTeX-ja project team

20230503.0 (May 3, 2023)
Contents

I User’s manual 4

1 Introduction 4
 1.1 Backgrounds ... 4
 1.2 Major changes from p\TeX .. 4
 1.3 Notations ... 5
 1.4 About the project .. 6

2 Getting Started 7
 2.1 Installation ... 7
 2.2 Cautions .. 8
 2.3 Using in plain \TeX .. 8
 2.4 Using in \LaTeX .. 9

3 Changing Fonts 10
 3.1 plain \TeX and \LaTeX 2 \textgreek{\varepsilon} .. 10
 3.2 luatexja-fontspec package ... 11
 3.3 Presets of Japanese fonts .. 12
 3.4 \textbackslash CID, \textbackslash UTF, and macros in japanese-otf package 12

4 Changing Internal Parameters 12
 4.1 Range of J\texttt{A}chars .. 13
 4.2 \texttt{kanjiskip} and \texttt{xkanjiskip} 15
 4.3 Insertion setting of \texttt{xkanjiskip} 16
 4.4 Shifting the baseline ... 16
 4.5 \texttt{kinsoku} parameters and OpenType features 17

II Reference 18

5 \texttt{\catcode} in Lua\TeX -ja 18
 5.1 Preliminaries: \texttt{\catcode} in p\TeX and up\TeX 18
 5.2 Case of Lua\TeX -ja ... 18
 5.3 Non-kanji characters in a control word 18

6 Directions 18
 6.1 Boxes in different direction .. 19
 6.2 Getting current direction ... 20

7 Redefined primitives by Lua\TeX -ja 21
 7.1 Suppressing redefinitions ... 22

8 Font Metric and Japanese Font 22
 8.1 \texttt{\jfont} .. 22
 8.2 \texttt{\tfont} .. 25
 8.3 Default Japanese fonts and JFMs 27
 8.4 Prefix psft .. 27
 8.5 Structure of a JFM file .. 28
 8.6 Math font family .. 31
 8.7 Callbacks ... 32
9 Parameters

9.1 \ltjsetparameter .. 33
9.2 \ltjgetparameter .. 35
9.3 Alternative Commands to \ltjsetparameter 36

10 Other Commands for plain \TeX{} and \hbox{\TeX\,\ε} .. 37

10.1 Commands for compatibility with \hbox{p\TeX} 37
10.2 \ inhibitglue, \ disinhibitglue 37
10.3 \ltjfakeboxdd, \ltjfakeparbegin 38
10.4 \insertxkanjiskip, \insertkanjiskip 38
10.5 \ltjdeclarealtfont ... 39

11 Commands for \hbox{\TeX\,\ε} 39

11.1 Loading Japanese fonts in \hbox{\TeX\,\ε} 39
11.2 Patch for NFSS2 .. 40
11.3 Detail of \fontfamily command 42
11.4 Notes on \DeclareTextSymbol 43
11.5 \strutbox .. 43

12 expl3 interface ... 43

13 Addon packages .. 44

13.1 luatexja-fontspec ... 44
13.2 luatexja-off ... 46
13.3 luatexja-adjust .. 47
13.4 luatexja-ruby .. 47
13.5 lltjext.sty ... 48
13.6 luatexja-preset .. 48
13.6.1 General Options ... 49
13.6.2 Presets which support multi weights 50
13.6.3 Presets which do not support multi weights 52
13.6.4 Presets which use HG fonts 53
13.6.5 Define/Use Custom Presets 53

III Implementations .. 55

14 Storing Parameters .. 55

14.1 Used dimensions, attributes and whatsit nodes 55
14.2 Stack system of Lua\TeX-ja 56
14.3 Lua functions of the stack system 57
14.4 Extending Parameters ... 58

15 Linebreak after a Japanese Character 59

15.1 Reference: behavior in \hbox{p\TeX} 59
15.2 Behavior in Lua\TeX-ja ... 59

16 Patch for the listings Package 60

16.1 Notes and additional keys 60
16.2 Class of characters .. 61
This documentation is far from complete. It may have many grammatical (and contextual) errors. Also, several parts are written in Japanese only.
Part I
User’s manual

1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents when using LuaTEX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese documents in TEX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents without using very complicated macros. But this point is a mixed blessing: pTEX is left behind from other extensions of TEX, especially εTEX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8 encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and εpTEX (merging of pTEX and εTEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua "callbacks", users can customize the internal processing of LuaTEX. So there is no need to modify sources of engines to support Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major changes from pTEX

The LuaTEX-ja package is under much influence of pTEX engine. The initial target of development was to implement features of pTEX. However, implementing all feature of pTEX is impossible, since all process of LuaTEX-ja must be implemented only by Lua and TEX macros. Hence LuaTEX-ja is not a just porting of pTEX; unnatural specifications/behaviors of pTEX were not adopted.

The followings are major changes from pTEX. For more detailed information, see Part III or other sections of this manual.

■ Command names pTEX adds several primitives, such as \kanjiskip, \prebreakpenalty, and \ifydir. They can be used as follows:

\kanjiskip=10pt \dimen0=kanjiskip
\tbaselineshift=0.1zw
\dimen0=tbaselineshift
\prebreakpenalty=`ぁ=100
\ifydir ... \fi

However, we cannot use them under LuaTEX-ja. Instead of them, we have to write as the following.

\ltjsetparameter{kanjiskip=10pt} \dimen0=\ltjgetparameter{kanjiskip}
\ltjsetparameter{tbaselineshift=0.1\zw}
\dimen0=\ltjgetparameter{tbaselineshift}
\ltjsetparameter{prebreakpenalty=`ぁ,100}
\ifnum\ltjgetparameter{direction}=4 ... \fi

Note that pTEX adds new two useful units, namely zw and zh. As shown above, they are changed to \zw and \zh respectively in LuaTEX-ja.¹

■ Linebreak after a Japanese character In pTEX, a line break after Japanese character is ignored (and doesn’t yield a space), since line breaks (in source files) are permitted almost everywhere in Japanese texts. However, LuaTEX-ja doesn’t have this feature completely, because of a specification of LuaTEX. For the detail, see Section 15.

¹LuaTEX-ja 20200127.0 introduces \ltj@zw and \ltj@zh, which are copy of \zw and \zh.
Spaces related to Japanese characters The insertion process of glues/kerns between two Japanese characters and between a Japanese character and other characters (we refer glues/kerns of both kinds as \texttt{JAglue}) is rewritten from scratch.

- As \LaTeX{}'s internal ligature handling is \texttt{node-based} (e.g., \texttt{of{}fice} doesn't prevent ligatures), the insertion process of \texttt{JAglue} is now \texttt{node-based}.
- Furthermore, nodes between two characters which have no effects in line break (e.g., \texttt{\special{node}}) and kerns from italic correction are ignored in the insertion process.
- \textit{Caution: due to above two points, many methods which did for the dividing the process of the insertion of \texttt{JAglue} in \TeX{} are not effective anymore.} In concrete terms, the following two methods are not effective anymore:
 ちょっと ちょっと
 If you want to do so, please put an empty horizontal box (hbox) between it instead:
 ちょっと\hbox{}

- In the process, two Japanese fonts which only differ in their "real" fonts are identified.

Directions From version 20150420.0, \LaTeX{}-ja supports vertical writing. We implement this feature by using callbacks of \LaTeX{}; so it must \texttt{not} be confused with \Omega-style direction support of \LaTeX{} itself. Due to implementation, the dimension returned by \texttt{\wd}, \texttt{\ht}, or \texttt{\dp} depends on the content of the register only. This is major difference with \TeX{}.

\discretionary Japanese characters in discretionary break (\texttt{\discretionary}) is not supported.

Greek and Cyrillic letters, and ISO 8859-1 symbols By default, \LaTeX{}-ja uses Japanese fonts to typeset Greek and Cyrillic letters. To change this behavior, put \texttt{\ltjsetparameter{jacharrange={-2,-3}}} in the preamble. For the detailed description, see Subsection 4.1.

 From version 20150906.0, characters which belongs both ISO 8859-1 and JIS X 0208, such as ¶ and §, are now typeset in alphabetic fonts.

1.3 Notations

In this document, the following terms and notations are used:

- Characters are classified into following two types. Note that the classification can be customized by a user (see Subsection 4.1).
 - \texttt{JAchar}: standing for characters which is used in Japanese typesetting, such as Hira-gana, Katakana, Kanji, and other Japanese punctuation marks.
 - \texttt{ALchar}: standing for all other characters like latin alphabets.

 We say \textit{alphabetic fonts} for fonts used in \texttt{ALchar}, and \textit{Japanese fonts} for fonts used in \texttt{JAchar}.

- A word in a sans-serif font with underline (like \texttt{prebreakpenalty}) means an internal parameter for Japanese typesetting, and it is used as a key in \texttt{\ltjsetparameter} command.

- A word in a sens-serif font without underline (like \texttt{fontspec}) means a package or a class of \TeX{}.

- In this document, natural numbers start from zero. \(\omega\) denotes the set of all natural numbers which can be used in \TeX{}.
1.4 About the project

Project Wiki Project Wiki is under construction.

- https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28en%29 (English)

This project is hosted by OSDN.

Members

- Hironori KITAGAWA
- Yusuke KUROKI
- Tomoaki HONDA
- Kazuki MAEDA
- Noriyuki ABE
- Shuzaburo SAITO
- Takayuki YATO
- Munehiro YAMAMOTO
- MA Qiyuan
2 Getting Started

2.1 Installation

The following packages are needed for the Lua\TeX-ja package.

- \texttt{Lua\TeX} 1.10.0 (or later) (DVI output (\texttt{\outputmode=0} is not supported.)
- recent \texttt{luaotfload} (v3.1 or later recommended)
- \texttt{adobemapping} (Adobe cmap and pdfmapping files)
- \texttt{EB\TeX} 2\text{e} 2020-02-02 patch level 5 or later (if you want to use Lua\TeX-ja with \texttt{EB\TeX} 2\text{e})
- \texttt{etoolbox} (if you want to use Lua\TeX-ja with \texttt{EB\TeX} 2\text{e})
- \texttt{everysec} (only for \texttt{EB\TeX} 2\text{e} 2020-02-02 and 2020-10-01)
- \texttt{filehook, atbegshi} (only for \texttt{EB\TeX} 2\text{e} 2020-02-02)
- \texttt{ltcmds, pdftexcmds}
- \texttt{fontspec} v2.7c (or later)
- \texttt{Harano Aji fonts (https://github.com/trueroad/HaranoAjiFonts)}
 More specifically, HaranoAjiMincho-Regular and HaranoAjiGothic-Medium.

Now Lua\TeX-ja is available from CTAN (in the \texttt{macros/luatex/generic/luatexja} directory), and the following distributions:

- \texttt{\TeX Live} (in \texttt{texmf-dist/tex/luatex/luatexja})
- \texttt{W32\TeX} (in \texttt{luatexja.tar.xz})
- \texttt{MiK\TeX} (in \texttt{luatexja.tar.xz})

Harano Aji fonts are also available in these distributions (haranoaji in \TeX Live and MiK\TeX, and \texttt{luatexja.tar.xz} in W32\TeX).

\textbf{HarfBuzz and Lua\TeX-ja} Using Lua\TeX-ja with Lua\HB\TeX\xspace(Lua\TeX\xspace integrated with HarfBuzz) is not well tested. Maybe documents can typeset without an error, but with unwanted results (especially, vertical typesetting and \texttt{\CID}).

Especially, \textit{We don't recommend defining a Japanese font with HarfBuzz}, by specifying \texttt{Renderer=Harfbuzz} etc. (\texttt{fontspec} or \texttt{mode=harf} (otherwise).

\textbf{Manual installation}

1. Download the source, by one of the following method. At the present, Lua\TeX-ja has no \textit{stable} release.

- Clone the Git repository by
 $ \texttt{git clone git://git.osdn.jp/gitroot/luatex-ja/luatexja.git}$
- Download the \texttt{tar.gz} archive of HEAD in the \texttt{master} branch from
 \url{http://git.osdn.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz}.

Note that the \texttt{master} branch, and hence the archive in CTAN, are not updated frequently; the forefront of development is not the \texttt{master} branch.

2. Extract the archive. You will see \texttt{src/} and several other sub-directories. But only the contents in \texttt{src/} are needed to work Lua\TeX-ja.
3. If you downloaded this package from CTAN, you have to run following commands to generate classes:

 $ cd src
 $ lualatex ltjclasses.ins
 $ lualatex ltjsclasses.ins
 $ lualatex ltjltxdoc.ins

4. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is an example location. If you cloned entire Git repository, making a symbolic link of src/ instead copying is also good.

5. If \texttt{mktxlsr} is needed to update the file name database, make it so.

2.2 Cautions

For changes from \texttt{p\TeX}, see Subsection 1.2.

- The encoding of your source file must be UTF-8. Other encodings, such as EUC-JP or Shift-JIS, are not supported.

- Lua\TeX-ja is very slower than \texttt{p\TeX}, and uses a lot of memory.

- (Outdated) note for MiKTe\TeX users Lua\TeX-ja requires that several CMap files\footnote{UniJIS2004-UTF32-{H,V} and Adobe-Japan1-UCS2.} must be found from Lua\TeX. Strictly speaking, those CMAPs are needed only in the first run of Lua\TeX-ja after installing or updating. But it seems that MiKTe\TeX does not satisfy this condition, so you will encounter an error like the following:

 \begin{verbatim}
 ! LuaTeX error ...iles (x86)/MiKTeX 2.9/tex/luatex/luatexja/ljt-rmlgbm.lua
 bad argument #1 to 'open' (string expected, got nil)
 \end{verbatim}

If so, please execute a batch file which is written on the Project Wiki (English). This batch file creates a temporary directory, copy CMAPs in it, run a test file which loads Lua\TeX-ja in this directory, and finally delete the temporary directory.

- Note that when Lua\TeX-ja is loaded in plain Lua\TeX, we cannot use color specification on font loading, such as

 \begin{verbatim}
 \font\hoge=lmroman10-regular.otf:color=FF0000 % \font primitive
 \end{verbatim}

This is because codes for shifting baseline in math mode (Lua\TeX-ja) collide with and prevents loading codes for font color (luaotfload) in these environments. \textit{We recommend to use \LaTeX 2020-02-02 (or later)}, since we can avoid this collision in there.

2.3 Using in plain \LaTeX

To use Lua\TeX-ja in plain \LaTeX, simply put the following at the beginning of the document:

\begin{verbatim}
\input luatexja.sty
\end{verbatim}

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

- The following 12 Japanese fonts are preloaded:

\begin{verbatim}
<table>
<thead>
<tr>
<th>direction classification</th>
<th>font name</th>
<th>“10 pt”</th>
<th>“7 pt”</th>
<th>“5 pt”</th>
</tr>
</thead>
<tbody>
<tr>
<td>yoko (horizontal)</td>
<td>mincho</td>
<td>HaranoAjiMincho-Regular</td>
<td>\tenmin</td>
<td>\sevenmin</td>
</tr>
<tr>
<td></td>
<td>gothic</td>
<td>HaranoAjiMincho-Gothic-Medium</td>
<td>\tengt</td>
<td>\seventgt</td>
</tr>
<tr>
<td>tate (vertical)</td>
<td>mincho</td>
<td>HaranoAjiMincho-Regular</td>
<td>\tentmin</td>
<td>\seventmin</td>
</tr>
<tr>
<td></td>
<td>gothic</td>
<td>HaranoAjiMincho-Gothic-Medium</td>
<td>\tentgt</td>
<td>\seventgt</td>
</tr>
</tbody>
</table>
\end{verbatim}
– The “default” Japanese fonts (and JFMs for them) can be modified by defining `\j@stdmcfont` etc. before one inputs `luatexja.sty` (Subsection 8.3).

– A character in an alphabetic font is generally smaller than a Japanese font in the same size. So actual size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts, namely scaled by 0.962216.

- The amount of glue that are inserted between a `\textsc{JaChar}` and an `\textsc{AlChar}` (the parameter `\xkanjiskip`) is set to

\[
(0.25 \cdot 0.962216 \cdot 10 \text{ pt})_{-1}^{+1} = 2.40554 \text{ pt}
\]

2.4 Using in \LaTeX

Using in \LaTeX~2e is basically same. To set up the minimal environment for Japanese, you only have to load `luatexja.sty`:

\begin{verbatim}
\usepackage{luatexja}
\end{verbatim}

It also does minimal settings (counterparts in \TeX~are `plfonts.dtx` and `pldefs.ltx`).

- Font encodings for Japanese fonts are `JY3` (for horizontal direction) and `JT3` (for vertical direction).

- Traditionally, Japanese documents use only two families: `mincho` (明朝体) and `gothic` (ゴシック体). `mincho` is used in the main text, while `gothic` is used in the headings or for emphasis.

Here `\jttdefault` specifies the Japanese font family in `\verb` or `verbatim` environment, and its default value is `\mcdefault` (mincho family).\footnote{When `ltjclasses` classes are used, or `luatexja-fontspec` (or `luatexja-preset`) is loaded with `match` option, `\tfamily` changes the current Japanese font family to `\jttdefault`. These classes and packages also redefine `\jttdefault` to `\gtdefault` (gothic family).}

- By default, the following fonts are used for these two families.

<table>
<thead>
<tr>
<th>classification</th>
<th>commands</th>
<th>family</th>
<th>\textit{scale}</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho (明朝体)</td>
<td><code>\textmc{...}</code> <code>\{\mcfamily ...\}</code> <code>\mcdefault</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gothic (ゴシック体)</td>
<td><code>\textgt{...}</code> <code>\{\gtfamily ...\}</code> <code>\gtdefault</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Japanese counterpart for typewriter font)</td>
<td>-</td>
<td>-</td>
<td><code>\jttdefault</code></td>
</tr>
</tbody>
</table>

Note that the bold series (series `bx` or `b`) in both family are same as the medium series of gothic family. There is no italic nor slanted shape for these `mc` and `gt`.

From version 20181102.0, one can specifies `disablejfam` option at loading Lua\TeX-ja. This option prevents loading a patch for \TeX, which are needed to support Japanese characters in math mode. Without `disablejfam` option, one can typeset Japanese characters in math mode as `$\&\text{\$}` (see Page 11) as before. Japanese characters in math mode are typeset by the font family `mc`.

- If you use the beamer class with the default font theme (which uses sans serif fonts) and with Lua\TeX-ja, you might want to change default Japanese fonts to the gothic family. The following line changes the default Japanese font family to it:

\begin{verbatim}
\renewcommand{\kanjifamilydefault}{\gtdefault}
\end{verbatim}
However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based documents, you are better to use class files other than article.cls, book.cls, and so on. At the present, LuaTeX-ja has the counterparts of jclasses (standard classes in p\TeX) and jclasses (classes by Haruhiko Okumura), namely, ltjclasses and ltjsclasses.

Original jclasses use \mag primitive to set the main document font size. However, Lua\TeX{} does not support \mag in PDF output, so ltjsclasses uses the nomag* option by default to set the main font size. If this causes some unexpected behavior, specify nomag option in \documentclass.

geometry package and classes for vertical writing
It is well-known that the geometry package produces the following error, when classes for vertical writing is used:

! Incompatible direction list can't be unboxed.
\@begindvi ->\unvbox \@begindvibox
\global \let \@begindvi \@empty

Now, Lua\TeX{}-ja automatically applies the patch lltjp-geometry to the geometry package, when the direction of the document is \textit{tate} (vertical writing). This patch lltjp-geometry also can be used in p\TeX; for the detail, please refer lltjp-geometry.pdf (Japanese).

3 Changing Fonts

3.1 plain \TeX{} and \textit{p\TeX} \textit{2\epsilon}

- **plain \TeX** To change Japanese fonts in plain \TeX{}, you must use the command \texttt{jfont} and \texttt{tfont}. So please see Subsection 8.1.

- **\textit{p\TeX} \textit{2\epsilon}** (NFSS2) For \textit{p\TeX} \textit{2\epsilon}, Lua\TeX{}-ja adopted most of the font selection system of \textit{p\TeX} \textit{2\epsilon} (in plfonts.dtx).

<table>
<thead>
<tr>
<th>encoding</th>
<th>family</th>
<th>series</th>
<th>shape</th>
<th>selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabetic fonts</td>
<td>romanencoding</td>
<td>romanfamily</td>
<td>romanseries</td>
<td>romanshape</td>
</tr>
<tr>
<td>Japanese fonts</td>
<td>kanjiencoding</td>
<td>kanjifamily</td>
<td>kanjiseries</td>
<td>kanjishape</td>
</tr>
<tr>
<td>both</td>
<td>—</td>
<td>—</td>
<td>\fontseries</td>
<td>\fontshape*</td>
</tr>
<tr>
<td>auto select</td>
<td>\fontencoding</td>
<td>\fontfamily</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- \texttt{\fontfamily}, \texttt{\fontseries}, and \texttt{\fontshape} try to change attributes of Japanese fonts, as well as those of alphabetic fonts. Of course, \texttt{\selectfont} is needed to select current text fonts.

Note that \texttt{\fontshape} always changes current alphabetic font shape, but it does \textit{not} change current Japanese font shape if the target shape is unavailable for current Japanese encoding/family/series. For the detail, see Subsection 11.2.

- \texttt{\fontencoding{\langle encoding\rangle}} changes the encoding of alphabetic fonts or Japanese fonts depending on the argument. For example, \texttt{\fontencoding{JY3}} changes the encoding of Japanese fonts to JY3, and \texttt{\fontencoding{T1}} changes the encoding of alphabetic fonts to T1. \texttt{\fontfamily} also changes the current Japanese font family, the current alphabetic font family, or \textit{both}. For the detail, see Subsection 11.2.

- For defining a Japanese font family, use \texttt{\DeclareKanjiFamily} instead of \texttt{\DeclareFontFamily}. (In previous version of Lua\TeX{}-ja, using \texttt{\DeclareFontFamily} didn’t cause any problem. But this no longer applies the current version.)

- Defining a Japanese font shape can be done by usual \texttt{\DeclareFontShape}:

```
\DeclareFontShape{JY3}{mc}{b}{n}{<-> s*HaranoAjiMincho--Bold:jfm=ujis;-kern}{% Harano Aji Mincho Bold
```

\footnote{ltjarticle.cls, ltjbook.cls, ltjreport.cls, ltjtarticle.cls, ltjtbook.cls, ltjrpt.cls. The latter ltjrpt.cls are for vertically written Japanese documents.}

\footnote{ltjsarticle.cls, ltjsbook.cls, ltjsreport.cls, ltjskiyou.cls.}

\footnote{Same effect as the BXjscls classes (by Takayuki Yato) and jclasses. However, these classes uses only \TeX{} code, but ltjsclasses uses Lua code.}

10
Table 1. Commands of \texttt{luatexja-fontspec}

<table>
<thead>
<tr>
<th>Japanese fonts</th>
<th>\jfontspec</th>
<th>\setmainjfont</th>
<th>\setsansjfont</th>
<th>\setmonojfont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabetic fonts</td>
<td>\fontspec</td>
<td>\setmainfont</td>
<td>\setsansfont</td>
<td>\setmonofont</td>
</tr>
</tbody>
</table>

Japanese fonts
\newjfontfamily \renewjfontfamily \setjfontfamily

Alphabetic fonts
\newfontfamily \renewfontfamily \setfontfamily

Japanese fonts
\newjfontface \defaultjfontfeatures \addjfontfeatures

Alphabetic fonts
\newfontface \defaultfontfeatures \addfontfeatures

\textbf{Japanese characters in math mode} Since \LaTeX{} supports Japanese characters in math mode, there are sources like the following:

1. $f_{\text{高温}}$~$=$~($f_{\text{high temperature}}$).
2. $y=(x-1)^2+2$\quad よって $y > 0$
3. $5 \in \text{素} := \{ p \in \mathbb{N} : p \text{ is a prime} \}$.

We (the project members of Lua\TeX{}-ja) think that using Japanese characters in math mode are allowed if and only if these are used as identifiers. In this point of view,

- The lines 1 and 2 above are not correct, since “高温” in above is used as a textual label, and “よって” is used as a conjunction.
- However, the line 3 is correct, since “素” is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1. $f_{\text{高温}}$~$=$~($f_{\text{high temperature}}$).
2. $y=(x-1)^2+2$\quad よって $y > 0$
3. $5 \in \text{素} := \{ p \in \mathbb{N} : p \text{ is a prime} \}$.

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change Japanese fonts in math mode in this chapter. For the method, please see Subsection \ref{sec: disablesffamily}.

When Lua\TeX{}-ja is loaded with \texttt{disablejfam} option, one cannot write Japanese characters in math mode as 素. At that case, one have to use \texttt{\mbox} (or \texttt{\text} in the \texttt{amsmath} package).

\subsection{luatexja-fontspec package}

To use the functionality of the fontspec package to Japanese fonts, it is needed to load the \texttt{luatexja-fontspec} package in the preamble, as follows:

\begin{verbatim}
\usepackage[⟨options⟩]{luatexja-fontspec}
\end{verbatim}

This \texttt{luatexja-fontspec} package automatically loads \texttt{luatexja} and \texttt{fontspec} packages, if needed.

In the \texttt{luatexja-fontspec} package, several commands are defined as counterparts of original commands in the fontspec package (see Table 1):

The package option of \texttt{luatexja-fontspec} are the followings:

\texttt{match}

If this option is specified, usual family-changing commands such as \texttt{\rmfamily}, \texttt{\textrm}, \texttt{\sffamily}, ... also change Japanese font family.

\texttt{pass=(⟨options⟩)}

(\texttt{Obsoleted}) Specify options (⟨options⟩) which will be passed to the fontspec package.
Override the ratio of the font size of Japanese fonts to that of alphabetic fonts. The default value is determined as follows:

- The value of \texttt{\Cjascale} is used, if this control sequence is already defined.
- It is calculated automatically from the current Japanese font at the loading of the package, if \texttt{\Cjascale} is not defined.

\texttt{\Cjascale} is defined in \texttt{ltjclasses} and \texttt{ltjsclasses}.

All other options listed above are simply passed to the fontspec package. This means that two lines below are equivalent, for example.

\begin{verbatim}
\usepackage[no-math]{fontspec}\usepackage{luatexja-fontspec}
\usepackage[no-math]{luatexja-fontspec}
\end{verbatim}

Note that kerning information in a font is not used (that is, kern feature is set off) by default in these seven (or eight) commands. This is because of the compatibility with previous versions of Lua\TeX-ja (see \texttt{8.1}).

Below is an example of \texttt{\jfontspec}.

\begin{verbatim}
1 \jfontspec[CJKShape=NLC]{HaranoAjiMincho-Regular}\par JIS X 0213:2004 \rightarrow 辻鯵
2 \jfontspec[CJKShape=JIS1998]{HaranoAjiMincho-Regular}\par JIS X 0208-1990 \rightarrow 辻鯵
3 \jfontspec[CJKShape=JIS1978]{HaranoAjiMincho-Regular}\par JIS C 6226-1978 \rightarrow 辻鯵
\end{verbatim}

3.3 Presets of Japanese fonts

With \texttt{luatexja-preset} package, one use one of "preset" to simplify Japanese font setting. For details of package options, and those of each presets, please see Subsection \texttt{13.6}. The following presets are defined:

haranoaji, hiragino-pro, hiragino-pron, ipa, ipa-hg, ipaex, ipaex-hg, kozuka-pró, kozuka-pró, kozuka-prón, kozuka-pro, moga-mobo, moga-mobo-ex, bizud, morisawa-prón, morisawa-pro, ms, ms-hg, noembed, noto-otc, noto-otf, noto, noto-jp, sourcehan, sourcehan-jp, ume, yu-osx, yu-win, yu-win18

For example, this document loads \texttt{luatexja-preset} package by

\begin{verbatim}
\usepackage[haranoaji]{luatexja-preset}
\end{verbatim}

which means that Harano Aji fonts will be used in this document.

3.4 \texttt{\CID}, \texttt{\UTF}, and macros in \texttt{japanese-otf} package

Under \texttt{pP\TeX}, \texttt{japanese-otf} package (developed by Shuzaburo Saito) is used for typesetting characters which is in Adobe-Japan1-6 CID but not in JIS X 0208. Since this package is widely used, Lua\TeX-ja supports some of functions in the \texttt{japanese-otf} package, as an external package \texttt{luatexja-otf}.

4 Changing Internal Parameters

There are many internal parameters in Lua\TeX-ja. And due to the behavior of Lua\TeX, most of them are not stored as internal register of \TeX, but as an original storage system in Lua\TeX-ja. Hence, to assign or acquire those parameters, you have to use commands \texttt{\ltjsetparameter} and \texttt{\ltjgetparameter}.
4.1 Range of JAchars

LuaTeX-ja divides the Unicode codespace U+0080–U+10FFFF into character ranges, numbered 1 to 217. The grouping can be (globally) customized by \ltjdefcharrange. The next line adds whole characters in Supplementary Ideographic Plane and the character "漢" to the character range 100.

```
\ltjdefcharrange{100}{"20000~2FFFF, ~漢}
```

A character can belong to only one character range. For example, whole SIP belong to the range 4 in the default setting of LuaTeX-ja, and if one executes the above line, then SIP will belong to the range 100 and be removed from the range 4.

The distinction between \texttt{ALchar} and \texttt{JAchar} is performed by character ranges. This can be edited by setting the jacharrange parameter. For example, the code below is just the default setting of LuaTeX-ja, and it sets

- a character which belongs character ranges 1, 4, 5, and 8 is \texttt{ALchar},
- a character which belongs character ranges 2, 3, 6, 7, and 9 is \texttt{JAchar}.

```
\ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, -8, +9}}
```

The argument to jacharrange parameter is a list of non-zero integer. Negative integer \(-n \) in the list means that "each character in the range \(n \) is an \texttt{ALchar}”, and positive integer \(+n\) means that "... is a \texttt{JAchar}”.

Note that characters U+0000–U+007F are always treated as an \texttt{ALchar} (this cannot be customized).

\section*{Default character ranges}

LuaTeX-ja predefines nine character ranges for convenience. They are determined from the following data:

- Blocks in Unicode 12.0.0.
- The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japan1- and Unicode.
- The PXbase bundle for uipTeX by Takayuki Yato.

Now we describe these nine ranges. The superscript "J" or "A" after the number shows whether each character in the range is treated as \texttt{JAchar}s or not by default. These settings are similar to the \texttt{prefercjk} settings defined in PXbase bundle. Any characters equal to or above U+0080 which does not belong to these eight ranges belongs to the character range 217.

Range 8 \(^{A} \) The intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a basic character set for Japanese). The character list is indicated in Table 2.

Range 1 \(^{A} \) Latin characters that some of them are included in Adobe-Japan1-7. This range consists of the Unicode ranges indicated in Table 3, except characters in the range 8 above.

Range 2 \(^{A} \) Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.
Table 4. Unicode blocks in predefined character range 3.

<table>
<thead>
<tr>
<th>U+2070–U+209F</th>
<th>Superscripts and Subscripts</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+20A0–U+20CF</td>
<td>Currency Symbols</td>
</tr>
<tr>
<td>U+2100–U+214F</td>
<td>Letterlike Symbols</td>
</tr>
<tr>
<td>U+2150–U+218F</td>
<td>Number Forms</td>
</tr>
<tr>
<td>U+2190–U+21FF</td>
<td>Arrows</td>
</tr>
<tr>
<td>U+2200–U+22FF</td>
<td>Mathematical Operators</td>
</tr>
<tr>
<td>U+2300–U+23FF</td>
<td>Miscellaneous Technical</td>
</tr>
<tr>
<td>U+2400–U+243F</td>
<td>Control Pictures</td>
</tr>
<tr>
<td>U+2500–U+257F</td>
<td>Box Drawing</td>
</tr>
<tr>
<td>U+2580–U+259F</td>
<td>Block Elements</td>
</tr>
<tr>
<td>U+25A0–U+25FF</td>
<td>Geometric Shapes</td>
</tr>
<tr>
<td>U+2600–U+26FF</td>
<td>Miscellaneous Symbols</td>
</tr>
<tr>
<td>U+2700–U+27BF</td>
<td>Dingbats</td>
</tr>
<tr>
<td>U+2900–U+297F</td>
<td>Supplemental Arrows-B</td>
</tr>
<tr>
<td>U+2980–U+29FF</td>
<td>Miscellaneous Math Symbols-B</td>
</tr>
</tbody>
</table>

Table 5. Characters in predefined character range 9.

(U+2002)	En space
(U+2010)	Hyphen
(U+2011)	Non-breaking hyphen
(U+2013)	Em dash
(U+2014)	Horizontal bar
(U+2015)	Double vertical line
(U+2018)	Left single quotation mark
(U+2019)	Right single quotation mark
(U+201A)	Single low-9 quotation mark
(U+201C)	Left double quotation mark
(U+201D)	Right double quotation mark
(U+201E)	Double low-9 quotation mark
(U+2020)	Dagger
(U+2021)	Double dagger
(U+2022)	Bullet
(U+2023)	Two dot leader
(U+2026)	Horizontal ellipsis
(U+2027)	Prime
(U+2028)	Single left-pointing angle quot.
(U+2029)	Reference mark
(U+202A)	Double right-pointing angle quot.
(U+202E)	Overline
(U+202F)	Asterism
(U+2030)	Single right-pointing angle quot.
(U+2032)	Asterism
(U+2033)	Double prime
(U+2035)	Two dots
(U+2037)	Horizontal ellipsis
(U+2038)	Per mille sign
(U+2039)	Single left-pointing angle quot.
(U+203A)	Reference mark
(U+203C)	Double exclamation mark
(U+203D)	Question exclamation mark
(U+2040)	Two asterisks aligned vertically
(U+2041)	Two asterisks aligned vertically

- U+0370–U+03FF: Greek and Coptic
- U+1F00–U+1FFF: Greek Extended
- U+0400–U+04FF: Cyrillic

Range 3
Miscellaneous symbols. The block list is indicated in Table 4.

Range 9
The intersection of the “General Punctuation” block (U+2000–U+206F) and Adobe-Japan1-7 character collection. This character range characters in Table 5.

Range 4
Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which are not in other predefined ranges. Hence, instead of showing the block list, we put the definition of this range itself.

\texttt{\textbackslash ltldefcharrange\{} %

\texttt{\textbackslash "6E00\textendash \"80FF, \"8100\textendash \"9FFF, \"A000\textendash \"D7FF, \"E000\textendash \"FFFD, \"10000\textendash \"10FFFF, \"110000\textendash \"1FFFFF, \ldots (and characters in U+2000–U+206F which are not in range 9)\textbackslash} % non-Japanese

Range 5
Surrogates and Supplementary Private Use Areas.

Range 6
Characters used in Japanese. The block list is indicated in Table 6.

Range 7
Characters used in CJK languages, but not included in Adobe-Japan1-7. The block list is indicated in Table 7.

Notes on U+0800–U+08FF
You should treat characters in textttU+0800–U+08FF as \texttt{Alchar}, when you use traditional 8-bit fonts, such as the marvosym package.
To use these data from JFM, set the value of \xkanjiskip as the unit \zw as the unit of \zw. Here \xkanjiskip is a internal dimension which stores fullwidth of the current Japanese font. This \zw may occur that JFM contains the data of “ideal width of \xkanjiskip” which is provided by the marvosym package has the same codepoint as § (U+00A7). Hence, as previous versions of LuaTeX-ja, if these characters are treated as JAchar, then \Fromomy produces “§” (in a Japanese font).

To avoid such situations, the default setting of LuaTeX-ja is changed in version 20150906.0 so that all characters U+00B0–U+00FF are treated as ALchar.

If you want to output a character as JAchar and JAchar regardless the range setting, you can use \ltjchar and \ltjchar respectively, as the following example.

```
\gdef\maxdimen{3000pt}
\begin{verbatim}
1 \gfamily\large % default, ALchar, JAchar
2 §, \ltjchar §, \ltjchar J\% default: ALchar
3 α, \ltjchar α, \ltjchar α % default: JAchar
\end{verbatim}
```

4.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

- Glues/kerns specified in JFM. If \inhibitchue is issued around a JAchar, this glue will not be inserted at the place.
- The default glue which inserted between two JAchars (kanjiskip).
- The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following. Note that only their values at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.

```
\ltjsetparameter{kanjiskip={0pt plus 0.4pt minus 0.4pt},
\xkanjiskip={0.25\zw plus 1pt minus 1pt}}
```

Here \zw is a internal dimension which stores fullwidth of the current Japanese font. This \zw can be used as the unit \zw in pT\TeX.

The value of these parameter can be get by \ltjgetparameter. Note that the result by \ltjgetparameter is not the internal quantities, but a string (hence \the cannot be prefixed).

```
\begin{verbatim}
\kanjiskip: \ltjgetparameter(\kanjiskip), \xkanjiskip: \ltjgetparameter(\xkanjiskip)
\end{verbatim}
```

It may occur that JFM contains the data of “ideal width of kanjiskip” and/or “ideal width of xkanjiskip”. To use these data from JFM, set the value of \kanjiskip or \xkanjiskip to \maxdimen (these “ideal width” cannot be retrieved by \ltjgetparameter).

Table 6. Unicode blocks in predefined character range 6.

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+2460</td>
<td>U+24FF</td>
<td>Enclosed Alphanumerics</td>
</tr>
<tr>
<td>U+3000</td>
<td>U+303F</td>
<td>CJK Symbols and Punctuation</td>
</tr>
<tr>
<td>U+30AB</td>
<td>U+30FF</td>
<td>Katakana</td>
</tr>
<tr>
<td>U+31FB</td>
<td>U+31FF</td>
<td>Kanji Phonetic Extensions</td>
</tr>
<tr>
<td>U+3300</td>
<td>U+33FF</td>
<td>CJK Compatibility</td>
</tr>
<tr>
<td>U+4E00</td>
<td>U+4E80</td>
<td>CJK Unified Ideographs</td>
</tr>
<tr>
<td>U+7FF0</td>
<td>U+7FF0</td>
<td>Vertical Forms</td>
</tr>
<tr>
<td>U+8FF0</td>
<td>U+8FF0</td>
<td>Small Form Variants</td>
</tr>
<tr>
<td>U+1B00</td>
<td>U+1BFF</td>
<td>Kana Supplement</td>
</tr>
<tr>
<td>U+1F00</td>
<td>U+1FFF</td>
<td>Enclosed Alphanumeric Supp.</td>
</tr>
<tr>
<td>U+2000</td>
<td>U+2FF0</td>
<td>(Supp. Ideographic Plane)</td>
</tr>
<tr>
<td>U+33FF</td>
<td>U+33FF</td>
<td>Variation Selectors Supp.</td>
</tr>
</tbody>
</table>

Table 7. Unicode blocks in predefined character range 7.

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+1000</td>
<td>U+11FF</td>
<td>Hangul Jamo</td>
</tr>
<tr>
<td>U+2F00</td>
<td>U+2FF0</td>
<td>Ideographic Description Characters</td>
</tr>
<tr>
<td>U+3100</td>
<td>U+31FF</td>
<td>Hangul Compatibility Jamo</td>
</tr>
<tr>
<td>U+3190</td>
<td>U+31FF</td>
<td>CJK Strokes</td>
</tr>
<tr>
<td>U+4A90</td>
<td>U+4A4F</td>
<td>Yi Radicals</td>
</tr>
<tr>
<td>U+4C00</td>
<td>U+4D7F</td>
<td>Hangul Syllables</td>
</tr>
<tr>
<td>U+5780</td>
<td>U+57FF</td>
<td>Hangul Jamo Extended-B</td>
</tr>
</tbody>
</table>

For example, \Frowny which is provided by the marvosym package has the same codepoint as § (U+00A7). Hence, as previous versions of LuaTeX-ja, if these characters are treated as JAchar, then \Fromomy produces “§” (in a Japanese font).
4.3 Insertion setting of \texttt{xkanjiskip}

It is not desirable that \texttt{xkanjiskip} is inserted into every boundary between JAchars and ALchars. For example, \texttt{xkanjiskip} should not be inserted after opening parenthesis (e.g., compare "(あ"
and "(あ"). Lua\TeX-ja can control whether \texttt{xkanjiskip} can be inserted before/after a character, by changing \texttt{jaxspmode} for JAchars and \texttt{alxspmode} parameters ALchars respectively.

\begin{verbatim}
\lstset{language=LaTeX}
1 \ltxjsetparameter{jaxspmode={`.あ,preonly},
\hspace{1cm}alxspmode=`\!,postonly}}
2 pあqいう
\end{verbatim}

The second argument \texttt{preonly} means that the insertion of \texttt{xkanjiskip} is allowed before this character, but not after. The other possible values are \texttt{postonly}, \texttt{allow}, and \texttt{inhibit}.

\texttt{jaxspmode} and \texttt{alxspmode} use a same table to store the parameters on the current version. Therefore, line 1 in the code above can be rewritten as follows:

\begin{verbatim}
\ltxjsetparameter{alxspmode={`.あ,preonly}, jaxspmode=`\!,postonly}}
\end{verbatim}

One can use also numbers to specify these two parameters (see Subsection 9.1).

If you want to enable/disable all insertions of \texttt{kanjiskip} and \texttt{xkanjiskip}, set \texttt{autospacing} and \texttt{autoxspacing} parameters to \texttt{true}/\texttt{false}, respectively.

4.4 Shifting the baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of the pair is needed. In \TeX, this is achieved by setting \texttt{\ybaselineshift} (or \texttt{\tbaselineshift}) to a non-zero length (the baseline of ALchar is shifted below). However, for documents whose main language is not Japanese, it is good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, Lua\TeX-ja can independently set the shifting amount of the baseline of alphabetic fonts and that of Japanese fonts.

<table>
<thead>
<tr>
<th>Horizontal writing (yoko direction) etc.</th>
<th>Vertical writing (tate direction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabetic fonts</td>
<td>yalbaselineshift parameter</td>
</tr>
<tr>
<td>Japanese fonts</td>
<td>yjabaselineshift parameter</td>
</tr>
<tr>
<td></td>
<td>talbaselineshift parameter</td>
</tr>
<tr>
<td></td>
<td>tjabaselineshift parameter</td>
</tr>
</tbody>
</table>

Here the horizontal line in the below example is the baseline of a line.

\begin{verbatim}
\vrule width 150pt height 0.2pt depth 0.2pt \hskip-120pt
\ltxjsetparameter{yjabaselineshift=0pt,
yalbaselineshift=0pt}abcあいう
\ltxjsetparameter{yjabaselineshift=5pt,
yalbaselineshift=2pt}abcあいう
\end{verbatim}

There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by setting two parameters appropriately. The following is an example (beware the value is not well tuned):

\begin{verbatim}
\vrule width 150pt height 4.417pt depth-4.217pt\%
\ltxjsetparameter{yjabaselineshift=-1.757pt,
yalbaselineshift=-1.757pt}漢字
\ltxjsetparameter{yjabaselineshift=-1.757pt,
yalbaselineshift=-1.757pt}漢字
\end{verbatim}

Note that setting positive \texttt{yalbaselineshift} or \texttt{talbaselineshift} parameters does not increase the depth of one-letter syllable \texttt{p} of ALchar, if its left-protrusion (\texttt{\lpcode}) and right-protrusion (\texttt{\rpcode}) are both non-zero. This is because

- These two parameters are implemented by setting \texttt{yoffset} field of a glyph node, and this does not increase the depth of the glyph.

16
• To cope with the above situation, LuaTeX-ja automatically supplies a rule in every syllable.

• However, we cannot use this “supplying a rule” method if a syllable comprises just one letter whose \lpcode and \rpcode are both non-zero.

This problem does not apply for \texttt{yjabaselineshift} nor \texttt{tjabaselineshift}, becuse a \texttt{JAchar} is encapsulated by a horizontal box if needed.

4.5 \textit{kinsoku} parameters and OpenType features

Among parameters which related to Japanese word-wrapping process (\textit{kinsoku shori}), \texttt{jaxspmode}, \texttt{alxspmode}, \texttt{prebreakpenalty}, \texttt{postbreakpenalty} and \texttt{kcatcode} are stored by each character codes.

OpenType font features are ignored in these parameters. For example, a fullwidth katakana “ア” on line 10 in the below input is replaced to its halfwidth variant “ア”, by \texttt{hwid} feature. However, the penalty inserted after it is 10 which is the \texttt{postbreakpenalty} of “ア”, not 20.

\begin{verbatim}
1 \ltjsetparameter{postbreakpenalty={ア, 10}}
2 \ltjsetparameter{postbreakpenalty={ア, 20}}
3 \newcommand\showpostpena[1]{%
4 \leavevmode\setbox0=\hbox{#1\hbox{}}%
5 \unhbox0\setbox0=\lastbox\the\lastpenalty}
6 \showpostpena{ア}%,
7 \showpostpena{ア},
8 {\addjfontfeatures{CharacterWidth=Half}\showpostpena{ア}}
\end{verbatim}
Part II

Reference

5 \texttt{\textbackslash catcode} in \texttt{Lua\TeX}-ja

5.1 Preliminaries: \texttt{\textbackslash catcode} in \texttt{p\TeX} and \texttt{up\TeX}

In \texttt{p\TeX} and \texttt{up\TeX}, the value of \texttt{\textbackslash catcode} determines whether a Japanese character can be used in a control word. For the detail, see Table 8.

\texttt{\textbackslash catcode} can be set by a row of JIS X 0208 in \texttt{p\TeX}, and generally by a Unicode block\footnote{\texttt{up\TeX} divides U+FF00–U+FFEF (Halfwidth and Fullwidth Forms) into three subblocks, and \texttt{\textbackslash catcode} can be set by a subblock.} in \texttt{up\TeX}. So characters which can be used in a control word slightly differ between \texttt{p\TeX} and \texttt{up\TeX}.

5.2 Case of \texttt{Lua\TeX}-ja

The role of \texttt{\textbackslash catcode} in \texttt{p\TeX} and \texttt{up\TeX} can be divided into the following four kinds, and \texttt{Lua\TeX}-ja can control these four kinds separately:

- \textit{Distinction between JA\texttt{char} or AL\texttt{char} is controlled by the character range, see Subsection 4.1.}
- \textit{Whether the character can be used in a control word is controlled by setting \texttt{\textbackslash catcode} to 11 (enabled) or 12 (disabled), as usual.}
- \textit{Whether \texttt{jcharwidowpenalty} can be inserted before the character is controlled by the lowermost bit of the \texttt{\textbackslash catcode} parameter.}
- \textit{Linebreak after a JA\texttt{char} does not produce a space.}

Default setting of \texttt{\textbackslash catcode} of Unicode characters with \texttt{Lua\TeX} is slightly inconvenient for \texttt{p\TeX} users to shifting to \texttt{Lua\TeX}-ja, because several fullwidth characters which can be used in a control word with \texttt{p\TeX}, such as "1" (FULLWIDTH DIGIT ONE), cannot be used in a control word with \texttt{Lua\TeX}. Hence, \texttt{Lua\TeX}-ja changes the \texttt{\textbackslash catcode} of some characters—whose line breaking class is "ID" (Ideographic) in UAX #14—, to allow these characters in the control word.

5.3 Non-kanji characters in a control word

Because the engine differ, so non-kanji JIS X 0208 characters which can be used in a control word differ in \texttt{p\TeX}, in \texttt{up\TeX}, and in \texttt{Lua\TeX}-ja. Table 9 shows the difference. Except for three characters ‘・’, ‘゛’ and ‘゜’, \texttt{Lua\TeX}-ja admits more characters in a control word than \texttt{up\TeX}.

Difference becomes larger, if we consider non-kanji JIS X 0213 characters. For the detail, see \url{https://github.com/h-kitagawa/kct}.

6 Directions

\texttt{Lua\TeX} supports four \texttt{\Omega}-style directions: TLT, TRT, RTT and LTL. However, neither directions are not well-suited for typesetting Japanese vertically, hence we implemented vertical writing by rotating TLT-box by 90 degrees.

\texttt{Lua\TeX}-ja supports four directions, as shown in Table 10. The second column (\texttt{yoko} direction) is just horizontal writing, and the third column (\texttt{tate} direction) is vertical writing. The fourth column (\texttt{dtou} direction) is actually a hidden feature of \texttt{p\TeX}. We implemented this for debugging purpose. The fifth column (\texttt{utod} direction) corresponds the “tate (math) direction” of \texttt{p\TeX}.

Directions can be changed by \texttt{\textbackslash yoko}, \texttt{\textbackslash tate}, \texttt{\textbackslash dtou}, \texttt{\textbackslash utod}, only when the current list is null. These commands cannot be executed in unrestricted horizontal modes, nor math modes. The direction of a math formula is changed to \texttt{utod}, when the direction outside the math formula is \texttt{tate} (vertical writing).
Table 8. \kcatcode in up\TeX

<table>
<thead>
<tr>
<th>\kcatcode</th>
<th>meaning</th>
<th>control word</th>
<th>widow penalty</th>
<th>linebreak</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>non-cjk (treated as usual \TeX)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>kanji</td>
<td>Y</td>
<td>Y</td>
<td>ignored</td>
</tr>
<tr>
<td>17</td>
<td>kana</td>
<td>Y</td>
<td>Y</td>
<td>ignored</td>
</tr>
<tr>
<td>18</td>
<td>other</td>
<td>N</td>
<td>N</td>
<td>ignored</td>
</tr>
<tr>
<td>19</td>
<td>hangul</td>
<td>Y</td>
<td>Y</td>
<td>space</td>
</tr>
</tbody>
</table>

Table 9. Difference of the set of non-kanji JIS X 0208 characters which can be used in a control word

<table>
<thead>
<tr>
<th>row</th>
<th>col.</th>
<th>p\TeX</th>
<th>up\TeX</th>
<th>Lua\TeX-ja</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U+30FB)</td>
<td>1</td>
<td>6</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(U+309B)</td>
<td>1</td>
<td>11</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(U+309C)</td>
<td>1</td>
<td>12</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(U+FF48)</td>
<td>1</td>
<td>14</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF3E)</td>
<td>1</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FFE3)</td>
<td>1</td>
<td>17</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF3F)</td>
<td>1</td>
<td>18</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+30FB)</td>
<td>1</td>
<td>19</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(U+30FE)</td>
<td>1</td>
<td>20</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(U+309D)</td>
<td>1</td>
<td>21</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(U+309E)</td>
<td>1</td>
<td>22</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(U+309F)</td>
<td>1</td>
<td>23</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+4EDD)</td>
<td>1</td>
<td>24</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(U+3065)</td>
<td>1</td>
<td>25</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+3066)</td>
<td>1</td>
<td>26</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+3067)</td>
<td>1</td>
<td>27</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+306C)</td>
<td>1</td>
<td>28</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

6.1 Boxes in different direction

As in p\TeX, one can use boxes of different direction in one document. The below is an example.

\begin{verbatim}
% ここは横組
\hbox{\tate% tate
\hbox{縦組}
の中に
\hbox{\yoko横組の内容}% yoko
を挿入する
}
% また横組に戻る
\end{verbatim}

Table 11 shows how a box is arranged when the direction inside the box and that outside the box differ.

<table>
<thead>
<tr>
<th>row</th>
<th>col.</th>
<th>p\TeX</th>
<th>up\TeX</th>
<th>Lua\TeX-ja</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U+FF0F)</td>
<td>1</td>
<td>31</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF3F)</td>
<td>1</td>
<td>32</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF5E)</td>
<td>1</td>
<td>33</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF5C)</td>
<td>1</td>
<td>35</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF0B)</td>
<td>1</td>
<td>60</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF1D)</td>
<td>1</td>
<td>65</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF1C)</td>
<td>1</td>
<td>67</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF1E)</td>
<td>1</td>
<td>68</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF03)</td>
<td>1</td>
<td>84</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF06)</td>
<td>1</td>
<td>85</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF0A)</td>
<td>1</td>
<td>86</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FF20)</td>
<td>1</td>
<td>87</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+3812)</td>
<td>2</td>
<td>9</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+3813)</td>
<td>2</td>
<td>14</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+FFE2)</td>
<td>2</td>
<td>44</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(U+212B)</td>
<td>2</td>
<td>82</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Greek letters (row 6) Y N Y
Cyrillic letters (row 7) N N Y

\textbf{\texttt{\wd\ and direction}} In p\TeX, \texttt{\wd\}, \texttt{\ht\}, \texttt{\dp\} means the dimensions of a box register \textit{with respect to the current direction}. This means that the value of \texttt{\wd\} etc. might differ when the current direction is different, even if \texttt{\box\} stores the same box. However, this no longer applies in Lua\TeX-ja.
Table 10. Directions supported by LuaTeX-ja

<table>
<thead>
<tr>
<th>Commands</th>
<th>horizontal (yoko direction)</th>
<th>vertical (tate direction)</th>
<th>dtou direction</th>
<th>utod direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of the page</td>
<td>yoko</td>
<td>tate</td>
<td>dtou</td>
<td>utod</td>
</tr>
<tr>
<td>Beginning of the line</td>
<td>top</td>
<td>right</td>
<td>left</td>
<td>right</td>
</tr>
<tr>
<td>Used Japanese font</td>
<td>horizontal (jfont)</td>
<td>vertical (tfont)</td>
<td>horizontal (90° rotated)</td>
<td></td>
</tr>
</tbody>
</table>

Example

-

(Note used in Ω)

<table>
<thead>
<tr>
<th></th>
<th>TLT</th>
<th>RTR, RTT</th>
<th>LBL</th>
<th>RTR</th>
</tr>
</thead>
</table>

To access box dimensions *with respect to current direction*, one has to use the following commands instead of \wd \wtc.

\ltjgetwd(num), \ltjgetht(num), \ltjgetdp(num)

These commands return an internal dimension of \box(num) with respect to the current direction. One can use these in \dimexpr primitive, as the followings.

\dimexpr 2\ltjgetwd42-3pt\relax, \the\ltjgetwd1701

The following is an example.

\ltjsetwd(num)=⟨dimen⟩, \ltjsetht(num)=⟨dimen⟩, \ltjsetdp(num)=⟨dimen⟩

These commands set the dimension of \box(num). One does not need to group the argument ⟨num⟩; four calls of \ltjsetwd below have the same meaning.

\ltjsetwd42 20pt, \ltjsetwd42-28pt, \ltjsetwd42 20pt, \ltjsetwd42-20pt

6.2 Getting current direction

The direction parameter returns the current direction, and the boxdir parameter (with the argument ⟨num⟩) returns the direction of a box register \box(num). The returned value of these parameters are a string:

<table>
<thead>
<tr>
<th>Direction</th>
<th>yoko</th>
<th>tate</th>
<th>dtou</th>
<th>utod</th>
<th>(empty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returned value</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 11. Boxes in different direction

<table>
<thead>
<tr>
<th>typeset in yoko direction</th>
<th>typeset in tate or utod direction</th>
<th>typeset in dtou direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $W_y = h_y + d_y$,
- $H_y = w_y$,
- $D_y = 0$ pt
- $W_t = h_y + d_y$,
- $H_t = w_y/2$,
- $D_t = w_y/2$
- $W_d = h_y + d_y$,
- $H_d = d_y$,
- $D_d = h_d$
- $W_D = w_y$, $H_D = d_t$, $D_D = h_t$

7 Redefined primitives by LuaTeX-ja

The following primitives are redefined by LuaTeX-ja (using `\protected\def`), for supporting Japanese typesetting and multiple directions:

`\leavevmode\def\DIR{\ltjgetparameter{direction}}`

\begin{itemize}
 \item `<num>` \unhbox\langle num \rangle, \unvbox\langle num \rangle, \unhcopy\langle num \rangle, \unvcopy\langle num \rangle
 \item `\vadjust{\langle material \rangle}`
 \item `\insert\langle number \rangle{\langle material \rangle}`
 \item `\lastbox`
 \item `\raise\langle dimen\rangle\langle box \rangle`, `\lower\langle dimen\rangle\langle box \rangle`, `\moveleft\langle dimen\rangle\langle box \rangle`, `\moveright\langle dimen\rangle\langle box \rangle`, `\split\langle number \rangle\langle to\dimen \rangle`, `\vcenter{\langle material \rangle}`
\end{itemize}
\makeatletter
\scriptsize \ttfamily
\meaning \vadjust \% current
\meaning \ltj@@vadjust \% LuaTeX-ja
\meaning \ltj@@orig@vadjust \% original
\makeatother
\vadjust

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{Redefining \vadjust primitive by LuaTeX-ja}
\end{figure}

\makeatletter
\def \ltj@stop@overwrite@primitive {\insert \vadjust \'/\unhbox \vcenter \fontseries}
\makeatother
%% Keep the meaning of \insert, \vadjust, \'/, \unhbox and \vcenter.
%% \fontseries will still be redefined by \LuaTeX-ja, because it is not primitive.
\usepackage{luatexja}
\include{breqn}
\makeatletter
\ltj@overwrite@primitive {\insert \vadjust \'/\unhbox \vcenter}
\makeatother
%% Redefine \insert, \vadjust, \'/, \unhbox and \vcenter.
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{\ltj@stop@overwrite@primitive and \ltj@overwrite@primitive}
\end{figure}

On each primitive \textit{(primitive)} in the list above, its meaning just before loading LuaTeX-ja is backed up into \texttt{\ltj@@orig@\textit{(primitive)}}, and the meaning after redefinition by LuaTeX-ja is stored in \texttt{\ltj@@\textit{(primitive)}}. For example, Figure 1 shows the situation of \vadjust primitive.

\section{Suppressing redefinitions}

Sometimes redefining primitives by LuaTeX-ja causes a problem. For example, the breqn package (v0.98k) assumes that \vadjust and \insert have their primitive meanings. So, this package cannot be loaded after LuaTeX-ja by default.

LuaTeX-ja version 20210517.0 has features for that problem. Namely:

- Primitives which is listed in \texttt{\ltj@stop@overwrite@primitive} are retain their meanings at just before loading LuaTeX-ja.
- After loading LuaTeX-ja, one can specify primitives to \texttt{\ltj@overwrite@primitive}, to redefine them by LuaTeX-ja.

See Figure 2 for an example.

\section{Font Metric and Japanese Font}

\subsection{\texttt{jfont}}

To load a font as a Japanese font (for horizontal direction), you must use the \texttt{jfont} instead of \texttt{font}, while \texttt{jfont} admits the same syntax used in \texttt{font}. LuaTeX-ja automatically loads luaotfload package, so TrueType/OpenType fonts with features can be used for Japanese fonts:

\begin{verbatim}
\jfont \tradmc={IPAexMincho:script=latn; +trad;-kern;jfm=uisj} at 14pt
\end{verbatim}

It is required to specify a (horizontal) JFM in at each calling of \texttt{jfont}. A JFM is a Lua script which contains measurements of characters and glues/kerns that are automatically inserted for Japanese typesetting. The structure of JFM will be described in the next subsection.
\texttt{\langle JFM name \rangle} The name of a (horizontal) JFM. Lua\TeX-ja searches and loads \texttt{jfm-\langle JFM name \rangle}.lua.

\texttt{\langle JFM features \rangle} An optional comma-separated list of JFM options. Enclosing braces ({}) are optional, but this does not escape any characters. The contents of this list can be accessed by a table \texttt{luatexja.jfont.jfm feature} from a JFM, at its loading. See Figure 4 for an example.

Note that any JFM files which is shipped with Lua\TeX-ja does not use this feature.

\texttt{\langle identifier \rangle} An optional string.

Lua\TeX-ja “does not distinguish” two Japanese fonts which uses same JFM and are the same size. Here “uses same JFM” means that all of \texttt{\langle JFM name \rangle}, \texttt{\langle JFM features \rangle} and \texttt{\langle identifier \rangle} of two fonts agree.

For example, The first “)” and “)” in Figure 3 are typeset in different real fonts. However, because they use the same JFMs and their size are same, Lua\TeX-ja inserts penalties, glues and kerns as if these two character are typeset in a same font. Namely, the glue between these characters is halfwidth, as in “)” “). However, this does not applies with \texttt{\F} and \texttt{\H} in Figure 3, because their \texttt{\langle identifier \rangle} are different.

\section*{Horizontal JFMs} The following horizontal JFMs are shipped with Lua\TeX-ja.

\footnotesize

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{藍} & \textbf{漢} & \textbf{漢} \\
\hline
ある日モモちゃんがお使いで迷子になって泣きました． & ちょっと！伺！ & \textcolor{red}{ちょっと！伺！} \\
ほげ，（ほげ） & ほげ，「ほげ」（ほげ） & ほげ，「ほげ」（ほげ） \\
\hline
\end{tabular}
\caption{Example of jfmvar key}
\end{table}

Note that the defined control sequence (\texttt{\textbackslash tradmc} in the example above) using \texttt{\jfont} is not a \texttt{fontdef} token, but a macro. Hence the input like \texttt{\fontname\textbackslash tradmc} causes a error. We denote control sequences which are defined in \texttt{jfont} by \texttt{\langle jfont_cs \rangle}.

\section*{Specifying JFM} The general scheme for specifying a JFM is the following:

\texttt{\jfont\langle jfont_cs \rangle} = \ldots; \texttt{jfm=} \langle JFM name \rangle/\{\langle JFM features \rangle\}\ldots; \texttt{[jfmvar=} \langle identifier \rangle\}; \ldots

\langle JFM name \rangle The name of a (horizontal) JFM. Lua\TeX-ja searches also in directories which are specified in \texttt{\input@path}.

\begin{footnotesize}

\footnotesize

8When Lua\TeX-ja (version 20230409 or later) is used under \LaTeX2ε, Lua\TeX-ja searches a JFM also in directories which are specified in \texttt{\input@path}.

\end{footnotesize}
\A: (nil)
B: \[kern = "0.5", [kana] = true, [ps] = false, \A あ 漢 イ 字 あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 \B あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 \C: \[kern = "0.5", [down] = "0.2", \A あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 \B あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 \D: \[kern = "0.5", [down] = "0.2", \A あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字 あ 漢 伊 字

Figure 4. Example of JFM features

jfm-ujis.lua A standard horizontal JFM of LuaTEX-ja. This file is based on upmlminr-h.tfm, a metric for UTF/OTF package that is used in upTEX. When you are going to use the luatexja-otf package, you should use this JFM.

jfm-jis.lua A counterfor jis.tfm, “JIS font metric” which is widely used in pTeX. A major difference between jfm-ujis.lua and this jfm-jis.lua is that most characters under jfm-ujis.lua are square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterfor min10.tfm, which is one of the default Japanese font metric shipped with pTeX.

jfm-prop.lua A JFM for proportional typesetting. This JFM doesn’t have any information of character dimension (width, height, depth), nor glues/kerns information.

jfm-propw.lua Another JFM for proportional typesetting. In contrast to jfm-prop.lua, this JFM has informations of character height and depth.

See Table 12 for the difference among jfm-ujis.lua, jfm-jis.lua, jfm-min.lua.

Using kerning information in a font Some fonts have information for inter-glyph spacing. LuaTEX-ja 20140324.0 or later treats kerning spaces like an italic correction; any glue and/or kern from the JFM and a kerning space from the font can coexist. See Figure 5 for detail.

At version 20220411.0, defaults Japanese fonts which are defined at the loading of LuaTEX-ja, ltjclasses, and ltjclasses do not insert font-derived kerning spaces by default. This is because standard JFMs do not expect font-derived kerning spaces between Japanese characters.

Also note that in \setmainjfont etc. which are provided by luatexja-fontspec package, kerning option is set off (Kerning=Off) by default. This means the following two lines have the same meaning:

\setmainjfont{HaranoAjiMincho-Regular} \setmainjfont[Kerning=Off]{HaranoAjiMincho-Regular}

extend and slant The following setting can be specified as OpenType font features:

decline=extend expand the font horizontally by \textit{extend}.
slant=slant slant the font.
Note that LuaTeX-ja doesn’t adjust JFMs by these extend and slant settings; one have to write new JFMs on purpose. For example, the following example uses the standard JFM jfm-ujis.1ua, hence the letterspacing and the width of italic corrections are not correct:

![Figure 5. Kerning information and kanjiskip](image)

![Figure 6. ltjksp "feature"](image)

■ltjksp “feature” kanjiskip natural, kanjiskip stretch, kanjiskip shrink keys (Page ??) makes tha LuaTeX-ja inserts not only a glue which is specified by a JFM, and also the natural width/stretch part/shrink part of kanjiskip. This functionality is disabled by -ltjksp specification, as shown in Figure 6.

■ltjpci “feature” By default, The luaotfload package (since v3.19) normalizes Unicode sequences to NFC. However, this normalization converts CJK compatibility ideographs to their canonical equivalents, such as “神” (U+FA19) to “神”. One can use variation selectors, but old fonts does not support them.

So, LuaTeX-ja now protects CJK compatibility ideographs from processing by the luaotfload package by default. This functionality is disabled by -ltjpci specification, as shown in Figure 7.

8.2 \tfont

\tfont loads a font as a Japanese font for vertical direction. This command admits the same syntax as in \font and \jfont. A font defined by \tfont differs the following points from that by \jfont:
• OpenType Feature vrt2 is automatically activated, unless vert and/or vrt2 features are explicitly activated or deactivated (as the second line in the example below).

 \font\S=HaranoAjiMincho-Regular:jfm=ujisv% vrt2 is automatically activated
 \font\T=HaranoAjiMincho-Regular:jfm=ujisv;vert% vert and vrt2 are not activated
 \font\U=file:ipaexm.ttf:jfm=ujisv % vert is automatically activated, since this font does not have vrt2

• Sometimes vert and/or vrt2 are not activated while one specified activation of these feature. This is because the font does not define these features in current combination of script tag and language system identifier.

 In this situation, LuaTeX-ja performs all replacements which is defined in vert feature for some scripts for some languages.

• Furthermore, a glyph is automatically rotated 90 degrees, if it is not replaced by vert feature for any script for any language, and if it is marked as ‘r’ or ‘Tr’ in UAX #50.

• \font uses a vertical JFM instead of a horizontal JFM. LuaTeX-ja ships following vertical JFMs:

 jfm-ujisv.lua A standard vertical JFM in LuaTeX-ja. This JFM is based on upnmlminr-v.tfm, a metric for UTF/OTF package that is used in upmX.

 jfm-tmin.lua A counterpart for tmin10.tfm, which is one of the default Japanese font metric shipped with mibX.

• If vert and/or vrt2 features are activated, one can specify jpotf to additional substitutions. By default, it substitutes ideographic comma/period for fullwidth comma/period, and double prime quotation marks for double quotation marks (See Figure 8). One can customize substitutions by lua function luatexja.jfont.register_vert_replace (see Japanese version of this manual).

 If the font does not define the vrt2 feature, vert is used instead.
8.3 Default Japanese fonts and JFMs

If following commands are defined at loading LuaTeX-ja package, these change default Japanese fonts and JFMs for them:

\ltj@stdmcfont The default Japanese font for the mincho family.
\ltj@stdgtfont The default Japanese font for the gothic family.
\ltj@stdyokojfm The default JFM for horizontal direction.
\ltj@stdtatejfm The default JFM for vertical direction.

For example,
\begin{verbatim}
def\ltj@stdmcfont{IPAMincho}
def\ltj@stdgtfont{IPAGothic}
\end{verbatim}

makes that IPA Mincho and IPA Gothic will be used as default Japanese fonts, instead of Harano Aji fonts.

This feature is intended for classes which use special JFMs10. It is recommended to use \verb|\luatexja-preset| or \verb|\luatexja-fontspec| package to select standard fonts in ordinary \LaTeX sources.

For compatibility with earlier versions, LuaTeX-ja reads \texttt{luatexja.cfg} automatically if it is found by Lua\TeX. One should not overuse this \texttt{luatexja.cfg}; it will overwrite the definition of \verb|\ltj@stdmcfont| and others.

8.4 Prefix psft

Besides “file” and “name” prefixes which are introduced in the luaotfload package, Lua\TeX-ja adds “psft” prefix in \texttt{\jfont} (and \texttt{\font}), to specify a “name-only” Japanese font which will not be embedded to PDF. Note that these non-embedded fonts under current Lua\TeX has Identity-H encoding, and this violates the standard ISO32000-1:2008 (\cite{ref10}).

OpenType font features, such as “\texttt{+jp90}”, have no meaning in name-only fonts using “psft” prefix, because we can’t expect what fonts are actually used by the PDF reader. Note that extend and slant settings (see above) are supported with psft prefix, because they are only simple linear transformations.

\begin{itemize}
 \item \textbf{cid key} The default font defined by using psft prefix is for Japanese typesetting; it is Adobe-Japan1-7 CID-keyed font. One can specify cid key to use other CID-keyed non-embedded fonts for Chinese or Korean typesetting.
\end{itemize}

\begin{verbatim}
\jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japan1-7;jfm=jis}% Japanese
\jfont\testD={psft:Ryumin-Light:jfm=jis} % default: Adobe-Japan1-7
\jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-7;jfm=jis}% Traditional Chinese
\jfont\testG={psft:SimSun:cid=Adobe-GB1-5;jfm=jis} % Simplified Chinese
\jfont\testK={psft:Batang:cid=Adobe-Korea1-2;jfm=jis}% Korean
\jfont\testKR={psft:SourceHanSerifAKR9:cid=Adobe-KR-9;jfm=jis}% Korean
\end{verbatim}

Note that the code above specifies \texttt{jfm-jis.lua}, which is for Japanese fonts, as JFM for Chinese and Korean fonts.

At present, Lua\TeX-ja supports only 5 values written in the sample code above. Specifying other values, e.g.,

\begin{verbatim}
\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}
\end{verbatim}

produces the following error:

```
! Package luatexja Error: bad cid key 'Adobe-Japan2'.
\par
See the luatexja package documentation for explanation.
\TypeH <\return> for immediate help.
<to be read again>
```
\begin{itemize}
 \item This is because commands has `@` in their names.
\end{itemize}
A JFM file is a Lua script which has only one function call:

```lua
luatexja.jfont.define_jfm { ... }
```

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are devoted to describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers in design-size unit.

```plaintext
version=(version) (optional, default value is 1)

The version JFM. Currently 1, 2, and, 3 are supported

dir=(direction) (required)

The direction of JFM. 'yoko' (horizontal) or 'tate' (vertical) are supported.

zw=(length) (required)

The amount of the length of the "full-width".

zh=(length) (required)

The amount of the "full-height" (height + depth).

kanjiskip={⟨natural⟩, ⟨stretch⟩, ⟨shrink⟩} (optional)

This field specifies the "ideal" amount of kanjiskip. As noted in Subsection 4.2, if the parameter kanjiskip is `\maxdimen`, the value specified in this field is actually used (if this field is not specified in JFM, it is regarded as 0 pt). Note that ⟨stretch⟩ and ⟨shrink⟩ fields are in design-size unit too.

xkanjiskip={⟨natural⟩, ⟨stretch⟩, ⟨shrink⟩} (optional)

Like the kanjiskip field, this field specifies the "ideal" amount of xkanjiskip.

**Character classes** Besides from above fields, a JFM file have several sub-tables those indices are natural numbers. The table indexed by \(i \in \omega\) stores information of character class \(i\). At least, the character class 0 is always present, so each JFM file must have a sub-table whose index is \([0]\). Each sub-table (its numerical index is denoted by \(i\)) has the following fields:

`chars={⟨character⟩, ...} (required except character class 0)`

This field is a list of characters which are in this character type \(i\). This field is optional if \(i = 0\), since all \(\text{JAchar}\) which do not belong any character classes other than 0 are in the character class 0 (hence, the character class 0 contains most of \(\text{JAchars}\)). In the list, character(s) can be specified in the following form:

- a Unicode code point
- the character itself (as a Lua string, like ‘あ’)
- a string like ‘あ*’ (the character followed by an asterisk)
- several "imaginary" characters (We will describe these later.)

`width=(length), height=(length), depth=(length), italic=(length) (required)`

Specify the width of characters in character class \(i\), the height, the depth and the amount of italic correction. All characters in character class \(i\) are regarded that its width, height, and depth are as values of these fields. The default values are shown in Table 13.
Table 13. Default values of width field and other fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>width field</td>
<td>the width of the &quot;real&quot; glyph</td>
</tr>
<tr>
<td>height field</td>
<td>the height of the &quot;real&quot; glyph</td>
</tr>
<tr>
<td>depth field</td>
<td>the depth of the &quot;real&quot; glyph</td>
</tr>
<tr>
<td>italic field</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Consider a Japanese character node which belongs to a character class whose the align field is 'middle'.

- The black rectangle is the imaginary body of the node. Its width, height, and depth are specified by JFM.
- Since the align field is 'middle', the "real" glyph is centered horizontally (the green rectangle) first.
- Furthermore, the glyph is shifted according to values of fields left and down. The ultimate position of the real glyph is indicated by the red rectangle.

These fields are for adjusting the position of the "real" glyph. Legal values of align field are 'left', 'middle', and 'right'. If one of these 3 fields are omitted, left and down are treated as 0, and align field is treated as 'left'. The effects of these 3 fields are indicated in Figure 9 and Figure 10.

In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle' or 'right'. For example, setting the align field to 'right' is practically needed when the current character class is the class for opening delimiters.

left={length}, down={length}, align={align}

kern=[j]={kern}, [j']={kern}, [ratio=(ratio)], ...}

Specifies the amount of kern or glue which will be inserted between characters in character class i and those in character class j.

⟨ratio⟩ specifies how much the glue is originated in the "right" character. It is a real number between 0 and 1, and treated as 0.5 if omitted. For example, The width of a glue between an ideographic full stop “.” and a fullwidth middle dot “･” is three-fourth of fullwidth, namely halfwidth from the ideographic full stop, and quarter-width from the fullwidth middle dot. In this case, we specify ⟨ratio⟩ to 0.25/(0.5 + 0.25) = 1/3.

In case of glue, one can specify following additional keys in each [j] subtable:
priority=⟨priority⟩ An integer in [−4, 3] (treated as 0 if omitted), or a pair of these integers ⟨⟨stretch⟩, ⟨shrink⟩⟩ (version 2 or later). This is used only in line adjustment with priority by luatexja-adjust (see Subsection 13.3). Higher value means the glue is easy to stretch, and is also easy to shrink.

kanjiskip_natural=⟨num⟩, kanjiskip_stretch=⟨num⟩, kanjiskip_shrink=⟨num⟩

These keys specifies the amount of the natural width of kanjiskip (the stretch/shrink part, respectively) which will be inserted in addition to the original JFM glue. Default values of them are all 0.

As an example, in jfm-ujis.lua, the standard JFM in horizontal writing, we have

• Between an ordinal letter "あ" and an ideographic opening bracket, we have a glue whose natural part and shrink part are both half-width, while its stretch part is zero. However, this glue also can be stretched as much as the stretch part of kanjiskip times the value of kanjiskip_stretch key (1 in this case).
• Between an ideographic closing brackets (including the ideographic comma "、") and an ordinal letter (including an AlChar "f"), we have the same glue. Again, this glue also can be stretched as much as the stretch part of kanjiskip times the value of kanjiskip_stretch key (1 in this case).
• Between an ideographic opening bracket and an ordinal letter and between an ordinal letter and an ideographic closing bracket, we have a glue whose natural part and stretch part are both zero, while its shrink part as much as the shrink part of kanjiskip.

Hence we have the following result:

```
\vrule
\let\V=\vrule
\ltjsetparameter{kanjiskip=0pt plus 5zw}
\ltjsetparameter{kanjiskip=0pt plus 0.5zw}
\vbox spread 7zw[あ「い」う, えお']\V
\vbox spread 0zw[あ「い」う, えお']\V
\vbox spread -2.5zw[あ「い」う, えお']\V
```

end_stretch=⟨kern⟩, end_shrink=⟨kern⟩ (optional, version 1 only)
end_adjust=⟨⟨kern⟩, ⟨kern⟩, ...⟩ (optional, version 2 or later)
round_threshold=⟨float⟩ (optional, version 3 or later, only available in character class 0)

Character to character classes We explain how the character class of a character is determined, using jfm-test.lua which contains the following:

```
[0] = {
chars = { '漢' },
align = 'left', left = 0.0, down = 0.0,
width = 1.0, height = 0.88, depth = 0.12, italic=0.0,
},
[2000] = {
chars = { '、', 'ヒ' },
align = 'left', left = 0.0, down = 0.0,
width = 0.5, height = 0.88, depth = 0.12, italic=0.0,
},
```

Now consider the following input/output:

```
\jfont\a=IPAexMincho:jfm=test:+hwid
\setbox0\hbox{\a ヒ漢}
\the\wd0
```

Now we look why the above source outputs 15 pt.

1. The character "ヒ" is converted to its half width form "ヒ" by hwid feature.
2. According to the JFM, the character class of "ヒ" is 2000, hence its width is halfwidth.
3. The character class of "漢" is zero, hence its width is fullwidth.

4. Hence the width of \hbox equals to 15 pt.

This example shows that the character class of a character is generally determined after applying font features by luaotfload.

However, if the class determined by the glyph after application of features is zero, LuaTeX-ja adopts the class determined by the glyph before application of features. The following input is an example.

\jfont\a=HaranoAjiMincho-Regular:jfm=test;+vert
\a 漢。
\inhibitglue 漢 漢

Here, the character class of the ideographic full stop “。” (U+3002) is determined as follows:

1. As the case of “ヒ”, the ideographic full stop “。” is converted to its vertical form “︒” (U+FE12) by vert feature.

2. The character class of “︒”, according to the JFM is zero.

3. However, LuaTeX-ja remembers that this “︒” is obtained from “。” by font features. The character class of “。” is non-zero value, namely, 2000.

4. Hence the ideographic full stop “。” in above belongs the character class 2000.

■ Imaginary characters

As described before, one can specify several “imaginary characters” in chars field. The most of these characters are regarded as the characters of class 0 in \p\TeX. As a result, LuaTeX-ja can control typesetting finer than \p\TeX. The following is the list of imaginary characters:

'boxbdd'

The beginning/ending of a hbox, and the beginning of a noindented (i.e., began by \noindent) paragraph. If a hbox begins (resp. ends) a glue or kern between this “character” and a JAchar, JAglue won’t be inserted before(resp. after) the hbox b. kanjiskip and xkanjiskip around a hbox.

'parbdd'

The beginning of an (indented) paragraph.

'jcharbdd'

A boundary between JChar and anything else.

'alchar', 'nox_alchar'

(version 3 or later) A boundary between JChar and ALchar.

'glue'

(version 3 or later) A boundary between JChar, and, a glue or kern.

−1 The left/right boundary of an inline math formula.

■ Porting JFM from \p\TeX

See Japanese version of this manual.

8.6 Math font family

\TeX handles fonts in math formulas by 16 font families\footnote{\textit{Omega}, \textit{Aleph}, LuaTeX and \varepsilon-\TeX can handles 256 families, but an external package is needed to support this in plain \TeX and \p\TeX.}, and each family has three fonts: \textfont, \scriptfont and \scriptscriptfont.

LuaTeX-ja’s handling of Japanese fonts in math formulas is similar; Table 14 shows counterparts to \TeX’s primitives for math font families. There is no relation between the value of \fam and that of \jfam; with appropriate settings, one can set both \fam and \jfam to the same value. Here (jfont.cs) in the argument of jatextfont etc. is a control sequence which is defined by \jfont, i.e., a \textit{horizontal} Japanese font.\footnote{\textit{Omega}, \textit{Aleph}, LuaTeX and \varepsilon-\TeX can handles 256 families, but an external package is needed to support this in plain \TeX and \p\TeX.}
8.7 Callbacks

LuaTeX-ja also has several callbacks. These callbacks can be accessed via luatexbase.add_to_callback function and so on, as other callbacks.

\textbf{luatexja.load_jfm callback}

With this callback, one can overwrite JFMs. This callback is called when a new JFM is loaded.

```lua
1 function (<table> jfm_info, <string> jfm_name)
 2 return <table> new_jfm_info
 3 end
```

The argument \texttt{jfm\_info} contains a table similar to the table in a JFM file, except this argument has \texttt{chars} field which contains character codes whose character class is not 0.

An example of this callback is the \texttt{ltjarticle} class, with forcefully assigning character class 0 to 'parbdd' in the JFM \texttt{jfm-min.lua}.

\textbf{luatexja.define_jfont callback}

This callback and the next callback form a pair, and you can assign characters which do not have fixed code points in Unicode to non-zero character classes. This \texttt{luatexja.define\_font} callback is called just when new Japanese font is loaded.

```lua
1 function (<table> jfont_info, <number> font_number)
 2 return <table> new_jfont_info
 3 end
```

\texttt{jfont\_info} has the following fields, which may not overwritten by a user:

- \texttt{size} The font size specified at \texttt{\jfont} in scaled points (1 sp = $2^{-16}$ pt).
- \texttt{zw, zh, kanjiskip, xkanjiskip} These are scaled value of those specified by the JFM, by the font size.
- \texttt{jfm} The internal number of the JFM.
- \texttt{var} The value of \texttt{jfmvar} key, which is specified at \texttt{\jfont}. The default value is the empty string.
- \texttt{chars} The mapping table from character codes to its character classes.
  - The specification \texttt{[i].chars=\{(character), ...\}} in the JFM will be stored in this field as \texttt{chars=\{\{(character)\}=i, ...\}}.
- \texttt{char\_type} For $i \in \omega$, \texttt{char\_type[i]} is information of characters whose class is $i$, and has the following fields:
  - width, height, depth, italic, down, left are just scaled value of those specified by the JFM, by the font size.
  - \texttt{align} is a number which is determined from \texttt{align} field in the JFM:
    
    \[
    \begin{array}{ll}
    1 & \text{('right' in JFM)}, \\
    0.5 & \text{('middle' in JFM)}, \\
    0 & \text{(otherwise)}.
    \end{array}
    \]

For $i, j \in \omega$, \texttt{char\_type[i][j]} stores a kern or a glue which will be inserted between character class $i$ and class $j$. 

---

Table 14. Commands for Japanese math fonts

<table>
<thead>
<tr>
<th>Japanese fonts</th>
<th>alphabetic fonts</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\jfam \in [0, 256)$</td>
<td>$\fam$</td>
</tr>
<tr>
<td>\texttt{jatextfont}=${(jfam),(jfont_cs)}$</td>
<td>\texttt{textfont}(fam)=$(font_cs)$</td>
</tr>
<tr>
<td>\texttt{jascriptfont}=${(jfam),(jfont_cs)}$</td>
<td>\texttt{scriptfont}(fam)=$(font_cs)$</td>
</tr>
<tr>
<td>\texttt{jascriptscriptfont}=${(jfam),(jfont_cs)}$</td>
<td>\texttt{scriptscriptfont}(fam)=$(font_cs)$</td>
</tr>
</tbody>
</table>
The returned table `new_jfont_info` also should include these fields, but you are free to add more fields (to use them in the `luatexja.find_char_class` callback). The `font_number` is a font number.

A good example of this and the next callbacks is the `luatexja-otf` package, supporting "AJ1-xxx" form for Adobe-Japan1 CID characters in a JFM. This callback doesn’t replace any code of LuaTEX-ja.

### `luatexja.find_char_class` callback

This callback is called just when LuaTeX-ja is trying to determine which character class a character `char_code` belongs. A function used in this callback should be in the following form:

```lua
function (<number> char_class, <table> jfont_info, <number> char_code)
 if char_class~=0 then return char_class
 else

 end
 return (<number> new_char_class or 0)
end
```

The argument `char_class` is the result of LuaTeX-ja’s default routine or previous function calls in this callback, hence this argument may not be 0. Moreover, the returned `new_char_class` should be as same as `char_class` when `char_class` is not 0, otherwise you will overwrite the LuaTeX-ja’s default routine.

### `luatexja.set_width` callback

This callback is called when LuaTeX-ja is trying to encapsule a `JAChar glyph_node`, to adjust its dimension and position.

```lua
function (<table> shift_info, <table> jfont_info, <table> char_type)
 return <table> new_shift_info
end
```

The argument `shift_info` and the returned `new_shift_info` have `down` and `left` fields, which are the amount of shifting down/left the character in a scaled point.

A good example is `test/valign.lua`. After loading this file, the vertical position of glyphs is automatically adjusted; the ratio `(height : depth)` of glyphs is adjusted to be that of letters in the character class 0. For example, suppose that

- The setting of the JFM: `(height) = 88x, (depth) = 12x` (the standard values of Japanese OpenType fonts);
- The value of the real font: `(height) = 28y, (depth) = 5y` (the standard values of Japanese TrueType fonts).

Then, the position of glyphs is shifted up by

$$\frac{88x}{88x + 12x}(28y + 5y) - 28y = \frac{26}{25}y = 1.04y.$$

### 9 Parameters

#### 9.1 \ltjsetparameter

As described before, `\ltjsetparameter` and `\ltjgetparameter` are commands for accessing most parameters of LuaTeX-ja. One of the main reason that LuaTeX-ja didn’t adopted the syntax similar to that of p\TeX (e.g., `\prebreakpenalty = 10000`) is the position of `hpack_filter` callback in the source of LuaTeX, see Section 14.

`\ltjsetparameter` and `\ltjglobalsetparameter` are commands for assigning parameters. These take one argument which is a key-value list. The difference between these two commands is the scope of assignment; `\ltjsetparameter` does a local assignment and `\ltjglobalsetparameter` does a global one by default. They also obey the value of `\globaldefs`, like other assignments.

The following is the list of parameters which can be specified by the `\ltjsetparameter` command. `[\cs]` indicates the counterpart in p\TeX, and symbols beside each parameter has the following meaning:


• “∗”: values at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.

• “†”: assignments are always global.

\*jcharwidowpenalty=(penalty)* \{\jcharwidowpenalty\}

Penalty value for suppressing orphans. This penalty is inserted just after the last J\*Achar which is not regarded as a (Japanese) punctuation mark.

\*kcatcode={⟨char_code⟩,(natural number)}* \{\kcatcode\}

An additional attributes which each character whose character code is ⟨char_code⟩ has. At version 20120506.0 or later, the lowermost bit of ⟨natural number⟩ indicates whether the character is considered as a punctuation mark (see the description of jcharwidowpenalty above).

\*prebreakpenalty={⟨char_code⟩,(penalty)}* \{\prebreakpenalty\}

Set a penalty which is inserted automatically before the character ⟨char_code⟩, to prevent a line starts from this character. For example, a line cannot started with one of closing brackets “}”, so LuaTEX-ja sets \ltjsetparameter{prebreakpenalty={`}} ,10000} by default.

\*postbreakpenalty={⟨char_code⟩,(penalty)}* \{\postbreakpenalty\}

Set a penalty which is inserted automatically after the character ⟨char_code⟩, to prevent a line ends with this character.

\*{⟨jfam⟩,(jfont_cs)}* \{\textfont in \TeX\}

\*{⟨jfam⟩,(jfont_cs)}* \{\scriptfont in \TeX\}

\*{⟨jfam⟩,(jfont_cs)}* \{\scriptscriptfont in \TeX\}

\*yjabaselineshift =⟨dimen⟩ \{\ybaselineshift\}

\*yalbaselineshift =⟨dimen⟩ \{\ybaselineshift\}

\*tjabaselineshift =⟨dimen⟩ \{\tbaselineshift\}

\*talbaselineshift =⟨dimen⟩ \{\tbaselineshift\}

\*{⟨char_code⟩,(mode)}* \{\xspan\}

Set whether inserting xkanjiskip is allowed before/after a J\*Achar whose character code is ⟨char_code⟩. The followings are allowed for ⟨mode⟩:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This is the default value.

This parameter is similar to the \inhibitxspan primitive of \*\TeX, but not compatible with \inhibitxspan.

\*{⟨char_code⟩,(mode)}* \{\xspan\}

Set whether inserting xkanjiskip is allowed before/after a A\*Lchar whose character code is ⟨char_code⟩. The followings are allowed for ⟨mode⟩:
0, inhibit  Insertion of \texttt{kanjiskip} is inhibited before the character, nor after the character.
1, preonly  Insertion of \texttt{kanjiskip} is allowed before the character, but not after.
2, postonly Insertion of \texttt{kanjiskip} is allowed after the character, but not before.
3, allow  Insertion of \texttt{kanjiskip} is allowed before the character and after the character. This is the default value.

Note that parameters \texttt{jxspmode} and \texttt{axspmode} share a common table, hence these two parameters are synonyms of each other.

\texttt{autospacing} = \langle \textit{bool} \rangle  \[\texttt{autospacing}\]
\texttt{autoxspacing} = \langle \textit{bool} \rangle  \[\texttt{autoxspacing}\]
\texttt{kanjiskip} = \langle \textit{skip} \rangle  \[\texttt{kanjiskip}\]
   The default glue which inserted between two \texttt{JChars}. Changing current Japanese font does not alter this parameter, as \texttt{pX}.
   If the natural width of this parameter is \texttt{\maxdimen}, \texttt{Lua\TeX-ja} uses the value which is specified in the JFM for current Japanese font (See Subsection 8.5).
\texttt{xkanjiskip} = \langle \textit{skip} \rangle  \[\texttt{xkanjiskip}\]
   The default glue which inserted between a \texttt{JChar} and an \texttt{AlChar}. Changing current font does not alter this parameter, as \texttt{pX}.
   As \texttt{kanjiskip}, if the natural width of this parameter is \texttt{\maxdimen}, \texttt{Lua\TeX-ja} uses the value which is specified in the JFM for current Japanese font (See Subsection 8.5).

\texttt{differentjfm} = \langle \textit{mode} \rangle^*$
   Specify how glues/kerns between two \texttt{JChars} whose JFM (or size) are different. The allowed arguments are the followings:
   \texttt{average}, \texttt{both}, \texttt{large}, \texttt{small}, \texttt{pleft}, \texttt{pright}, \texttt{paverage}

   The default value is \texttt{paverage}.

\texttt{jacharrange} = \langle \textit{ranges} \rangle
\texttt{kansujichar} = \langle \texttt{digit}, \texttt{char_code} \rangle^*  \[\texttt{kansujichar}\]
\texttt{direction} = \langle \textit{dir} \rangle  \texttt{(always local)}
   Assigning to this parameter has the same effect as \texttt{\yoko} (if \langle \textit{dir} \rangle = 4), \texttt{\tate} (if \langle \textit{dir} \rangle = 3), \texttt{\dou} (if \langle \textit{dir} \rangle = 1) or \texttt{\tou} (if \langle \textit{dir} \rangle = 11). If the argument \langle \textit{dir} \rangle is not one of 4, 3, 1 nor 11, the behavior of this assignment is undefined.

\section{\texttt{\textbackslash ltjgetparameter}}

\texttt{\textbackslash ltjgetparameter} is a control sequence for acquiring parameters. It always takes a parameter name as first argument.

\begin{align*}
&\texttt{\ltjgetparameter{differentjfm}}, \\
&\texttt{\ltjgetparameter{autospacing}}, \\
&\texttt{\ltjgetparameter{kanjiskip}}, \\
&\texttt{\ltjgetparameter{prebreakpenalty}}\{\texttt{'}\} }.
\end{align*}

The return value of \texttt{\ltjgetparameter} is always a string, which is outputted by \texttt{\text{tex.write}(). Hence any character other than space “ ” (U+0020) has the category code 12 (other), while the space has 10 (space).

- If first argument is one of the following, no additional argument is needed.
   \texttt{jcharwidowpenalty}, \texttt{yjabaselineshift}, \texttt{yalbaselineshift}, \texttt{autospacing}, \texttt{autoxspacing}, \texttt{kanjiskip}, \texttt{xkanjiskip}, \texttt{differentjfm}, \texttt{direction}
Note that \ltjgetparameter{autospacing} and \ltjgetparameter{autoxspacing} returns 1 or 0, not true nor false.

- If first argument is one of the following, an additional argument—a character code, for example—is needed.
  - kcatcode, prebreakpenalty, postbreakpenalty, jaxspmode, alxspmode

\ltjgetparameter{jaxspmode}{...} and \ltjgetparameter{alxspmode}{...} returns 0, 1, 2, or 3, instead of preonly etc.

- \ltjgetparameter{jacharrange}{⟨range⟩} returns 0 if “characters which belong to the character range (range) are JAchar”, 1 if “… are ALchar”. Although there is no character range −1, specifying −1 to (range) does not cause an error (returns 1).

  For an integer (digit) between 0 and 9, \ltjgetparameter{kansujichar}{⟨digit⟩} returns the character code of the result of \kansuji⟨digit⟩.

- \ltjgetparameter{adjustdir} returns an integer which represents the direction of the surrounding vertical list. As direction, the return value 1 means dtou direction, 3 means tate direction (vertical typesetting), and 4 means yoko direction (horizontal typesetting).

  For an integer (register) between 0 and 65535, \ltjgetparameter{boxdir}{⟨register⟩} returns the direction of \box⟨register⟩. If this box register is void, the returned value is zero.

- The following parameter names cannot be specified in \ltjgetparameter.
  - jatextfont, jascriptfont, javascriptscriptfont, jacharrange

\ltjgetparameter{chartorange}{⟨char code⟩} returns the range number which ⟨char code⟩ belongs to (although there is no parameter named “chartorange”).

  If ⟨char code⟩ is between 0 and 127, this ⟨char code⟩ does not belong to any character range. In this case, \ltjgetparameter{chartorange}{⟨char code⟩} returns −1.

  Hence, one can know whether ⟨char code⟩ is JAchar or not by the following:

\ltjgetparameter{jacharrange}{\ltjgetparameter{chartorange}{⟨char code⟩}} % 0 if JAchar, 1 if ALchar

- Because the returned value is string, the following conditionals do not work if \kanjiskip (or \xkanjiskip) has the stretch part or the shrink part.

  \ifdim\ltjgetparameter{kanjiskip}\z@ \else \f1 \fi
  \ifdim\ltjgetparameter{xkanjiskip}\z@ \else \f1 \fi

  The correct way is using a temporary register.

  \@tempskipa=\ltjgetparameter{kanjiskip} \ifdim\@tempskipa>\z@ \else \f1 \fi
  \@tempskipa=\ltjgetparameter{xkanjiskip} \ifdim\@tempskipa>\z@ \else \f1 \fi

9.3 Alternative Commands to \ltjsetparameter

The basic method to set parameters of LuaTeX-ja is to use \ltjsetparameter or \ltjglobalsetparameter. However, these commands are slow, because they parse a key-value list, so several alternative commands are used in LuaTeX-ja. This subsection is not for general LuaTeX-ja users.

■Setting kanjiskip or xkanjiskip

  In ltjclasses, every size-changing command such as \Large changes \kanjiskip and \xkanjiskip. But a simple implementation, as the code below, is slow since two key-value lists are parsed by \ltjsetparameter:
Hence, Lua\TeX-ja defines more primitive commands, namely \texttt{\letjsetpar\global}, \texttt{\letjsetkanjiskip}, and \texttt{\letjsetxkanjiskip}. Here
\texttt{\letjsetpar\global\letjsetkanjiskip 10pt} and \texttt{\letjsetkanjiskip 10pt} have the same effect. The actual code of \texttt{\ltjsclasses} is shown below:

\begin{verbatim}
\letjsetpar\global\letjsetkanjiskip{\z@ plus .1\zw minus .01\zw}
\ifdim\letjgetparameter{xkanjiskip}\z@
  \if@slide
   \letjsetxkanjiskip.1em
  \else
   \letjsetxkanjiskip.25em plus .15em minus .06em
  \fi
\fi
\end{verbatim}

Note that using \texttt{\letjsetkanjiskip} or \texttt{\letjsetxkanjiskip} alone, that is, without executing \texttt{\letjsetpar\global} in advance, is not supported.

10 Other Commands for plain \TeX and \LaTeX 2\epsilon

10.1 Commands for compatibility with \p\LaTeX

The following commands are implemented for compatibility with \p\LaTeX. Note that the former five commands don’t support JIS X 0213, but only JIS X 0208. The last \texttt{\kansuji} converts an integer into its Chinese numerals.

\begin{verbatim}
\koten, \jis, \euc, \sjis, \ucs, \kansuji
\end{verbatim}

These six commands takes an internal integer, and returns a string.

\begin{verbatim}
\newcount\hoge
\hoge="2423 %"\hoge
\the\hoge, \kansuji\hoge\jis\hoge, \char\jis\hoge\kansuji1701
\end{verbatim}

9251, 九二五一
12355, い
一七〇一

To change characters of Chinese numerals for each digit, set \texttt{kansujichar} parameter:

\begin{verbatim}
\letjsetparameter{\kansujichar={1,`壹}}
\letjsetparameter{\kansujichar={7,`漆}}
\letjsetparameter{\kansujichar={0,`零}}
\kansuji1701
\end{verbatim}

壹漆零壹

10.2 \texttt{\inhibitglue}, \texttt{\disinhibitglue}

\texttt{\inhibitglue} suppresses the insertion of a glue/kern specified in JFM at the place. The following is an example, using a special JFM that there will be a glue between the beginning of a box and “あ”, and also between “あ” and “ウ”.

\begin{verbatim}
\end{verbatim}
With the help of this example, we remark the specification of \inhibitglue:

- The call of \inhibitglue in the (internal) vertical mode is simply ignored.
- \inhibitglue does not suppress \kanjiskip or \xkanjiskip.
- The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not get over boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as shown in the last line of above example.
- The call of \inhibitglue in math mode is just ignored.

\disinhibitglue suppresses the effect of \inhibitglue. In other words, \disinhibitglue allows the insertion of a glue/kern specified by JFM. If \inhibitglue and \disinhibitglue both specified at the same time, the latest one is effective. This command is added in the version 20201224.0.

Note that \disinhibitglue also cancels ligatures and kernings.

### 10.3 \ltjfakeboxbdd, \ltjfakeparbegin

Sometimes 'parbdd' and 'boxbdd' specifications look like "fail", especially in paragraphs inside list environments. This is because \everypar inserts some nodes such as boxes and kerns, so the “first letter” in a paragraph is in fact not the first letter.

\ltjfakeboxbdd and \ltjfakeparbegin primitives resolve this situation.

- \ltjfakeparbegin creates a node which indicates "beginning of an indented paragraph" to the insertion process of JAglue.
- \ltjfakeboxbdd creates a node which indicates "beginning/ending of a box" to the insertion process of JAglue.

As an example, the example above can be improved as follows:

### 10.4 \insertxkanjiskip, \insertkanjiskip

There are some situations which one wants to insert \xkanjiskip manually. A simple approach is to use \hskip\ltjgetparameter{\xkanjiskip}, but this approach has several weak points. To cope with these weak points, LuaTeX-ja defines a command \insertxkanjiskip which inserts \xkanjiskip glue manually, from the version 20201224.0.
"\insertxkanjiskip" (without any keyword) uses the value of \xkanjiskip at the place.

"\insertxkanjiskip late" (with "late" keyword) uses the value of \xkanjiskip at the end of a paragraph/hbox.

See the example below.

1 \ltjsetparameter{xkanjiskip=0.25\zw}
2 あ( % 0.5\zw (from JFM)
3 あ
4 \insertxkanjiskip ( % 0.25\zw (xkanjiskip at here)
5 あ
6 \insertxkanjiskip late ( % 0.25\zw (xkanjiskip at EOP)
7 あ
8 \insertxkanjiskip ( % 1.25\zw (xkanjiskip at here)
9 あ
10 \insertxkanjiskip late ( % 1.25\zw (xkanjiskip at EOP)
11 あ
12 \ltjsetparameter{xkanjiskip=1.25\zw}
13 あ
14 \insertxkanjiskip ( % 1.25\zw (xkanjiskip at here)
15 あ
16 \insertxkanjiskip ( % 1.25\zw (xkanjiskip at EOP)
17 \% At the end of the paragraph (EOP), xkanjiskip is 1.25\zw.

There is a similar command \insertkanjiskip (kanjiskip instead of xkanjiskip) is also defined. Note that any shorthand form of \insert[x]kanjiskip are not defined by LuaTeX-ja.

10.5 \ltjdeclarealtfont

Using \ltjdeclarealtfont, one can "compose" more than one Japanese fonts. This \ltjdeclarealtfont uses in the following form:

\ltjdeclarealtfont\(base\_cs\)\(alt\_cs\)\{\(range\)\}

where \(base\_cs\) and \(alt\_cs\) are defined by \jfont. Its meaning is

If the current Japanese font is \(base\_cs\), characters which belong to \(range\) is typeset by another Japanese font \(alt\_cs\), instead of \(base\_cs\).

Here \(range\) is a comma-separated list of character codes, but also accepts negative integers: \(n (n \geq 1)\) means that all characters of character classes \(n\), with respect to JFM used by \(base\_cs\) are ignored.

For example, if \hoge uses jfm-ujis.lua, the standard JFM of LuaTeX-ja, then

\ltjdeclarealtfont\hoge\piyo\{“3000-”30FF, {-1}-{-1}\}

does

If the current Japanese font is \hoge, U+3000–U+30FF and characters in class 1 (ideographic opening brackets) are typeset by \piyo.

Note that specifying negative numbers needs specification like \{-1\}–\{-1\}, because simple “-1” is treated as the range between 0 and 1.

11 Commands for \LaTeX{}\(2\varepsilon\)

11.1 Loading Japanese fonts in \LaTeX{}\(2\varepsilon\)

From version 20190107, Lua\TeX{}-ja does not load Japanese fonts for horizontal direction and that for vertical direction at same time, to reduce the number of loaded fonts. This will save time for typesetting and memory consumption of Lua side ([11]).
• \selectfont loads (and chooses) only the Japanese font for the current direction, and does not load the Japanese font for other direction (LuaTEX-ja only detects its size and JFM, to calculate the amount of shifting the baseline).

• Direction changing commands (\yoko, \tate, \dtou, \utod) are patched to include the following process:

  If the Japanese font for new direction is not loaded, LuaTEX-ja loads it automatically.

Original commands are saved as \ltj@@orig@yoko etc.

• Specifying Japanese font command which is defined by \jfont, \tfont, or \DeclareFixedFont directly actually loads (and selects) the Japanese font. For example, JAchars in \box0 will be typeset in \HOGE, in the following code:

% in horizontal direction (\yoko)
\DeclareFixedFont\HOGE{JT3}{gt}{m}{n}{12} % JT3: for vertical direction
\HOGE
\setbox0=\hbox{\tate あいう}

11.2 Patch for NFSS2

Japanese patch for NFSS2 in LuaTEX-ja is based on p1fonts.dtx which plays the same role in \pTEX2. We will describe commands which are not described in Subsection 3.1.

additional dimensions
Like \pTEX2, LuaTEX-ja defines the following dimensions for information of current Japanese font:

\cht (height), \cdp (depth), \cHT (sum of former two),
\cwd (width), \cvs (lineskip), \chs (equals to \cwd)

and its \normalsize version:

\cht (height), \cdp (depth), \cwd (width),
\cvs (equals to \baselineskip), \chs (equals to \cwd).

Note that \cwd and \cHT may differ from \zw and \zh respectively. On the one hand the former dimensions are determined from a character whose character class is zero, but on the other hand \zw and \zh are specified by JFM.

\DeclareYokoKanjiEncoding{⟨encoding⟩}{⟨text-settings⟩}{⟨math-settings⟩}
\DeclareTateKanjiEncoding{⟨encoding⟩}{⟨text-settings⟩}{⟨math-settings⟩}

In NFSS2 under LuaTEX-ja, distinction between alphabetic fonts and Japanese fonts are only made by their encodings. For example, encodings OT1 and T1 are encodings for alphabetic fonts, and Japanese fonts cannot have these encodings. These command define a new encoding scheme for Japanese font families.

\DeclareKanjiEncodingDefaults{⟨text-settings⟩}{⟨math-settings⟩}
\DeclareKanjiSubstitution{⟨encoding⟩}{⟨family⟩}{⟨series⟩}{⟨shape⟩}
\DeclareErrorKanjiFont{⟨encoding⟩}{⟨family⟩}{⟨series⟩}{⟨shape⟩}{⟨size⟩}

The above 3 commands are just the counterparts for \DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{⟨unified-cmd⟩}{⟨al-cmd⟩}{⟨ja-cmd⟩}

\DeclareRelationFont{⟨ja-encoding⟩}{⟨ja-family⟩}{⟨ja-series⟩}{⟨ja-shape⟩}
{⟨al-encoding⟩}{⟨al-family⟩}{⟨al-series⟩}{⟨al-shape⟩}

This command sets the “accompanied” alphabetic font (given by the latter 4 arguments) with respect to a Japanese font given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local assignment, where \DeclareRelationFont does a global assignment.

40
At the next call of \selectfont, change current alphabetic font encoding/family/… to the ‘accompanied’ alphabetic font family with respect to current Japanese font family, which was set by \SetRelationFont or \DeclareRelationFont.

The following is an example of \SetRelationFont and \userelfont:
\begin{verbatim}
\makeatletter
\SetRelationFont{JY3}{\k@family}{m}{n}{TU}{lmss}{m}{n}
% \k@family: current Japanese font family
\userelfont\selectfontあいう abc
\end{verbatim}

\adjustbaseline
In \LaTeX, \adjustbaseline sets \baselineshift to match the vertical center of “M” and that of “漢” in vertical typesetting:
\[
\text{\baselineshift} = \frac{(h_M + d_M) - (h_\text{漢} + d_\text{漢})}{2} + d_\text{漢} - d_M,
\]
where \(h_a\) and \(d_a\) denote the height of “a” and the depth, respectively. In Lua\TeX-ja, this \adjustbaseline does similar task, namely setting the \talbaselineshift parameter (a Japanese character whose character class is zero is used, instead of “漢”).

\fontfamily{⟨family⟩}
As in \LaTeX, this command changes current font family (alphabetic, Japanese, or both) to ⟨family⟩. See Subsection 11.3 for detail.

\fontshape{⟨shape⟩}, \fontshapeforce{⟨shape⟩}
As in \LaTeX, this command changes current alphabetic font shape according to shape change rules. Traditionally, \fontshape changes also current Japanese font shape always. However, this leads a lot of \LaTeX font warning like
\begin{verbatim}
Font shape `JY3/mc/m/it' undefined
using `JY3/mc/m/n' instead on ....
\end{verbatim}
when \itshape is called, because almost all Japanese fonts only have shape “n”, and \itshape calls \fontshape.

Lua\TeX-ja 20200323.0 change the behavior. Namely, \fontshape{⟨shape⟩} and \fontshapeforce{⟨shape⟩} change current Japanese font shape, only if the required shape (according to shape changing rules) or ⟨shape⟩ is available in current Japanese font family/series. When this is not the case, an info such as
\begin{verbatim}
Kanji font shape JY3/mc/m/it' undefined
No change on ...
\end{verbatim}
is issued instead of a warning.

\kanjishape{⟨shape⟩}, \kanjishapeforce{⟨shape⟩}
\kanjishape{⟨shape⟩} changes current Japanese font shape according to shape change rules, and \kanjishapeforce{⟨shape⟩} changes current Japanese font shape to ⟨shape⟩, regardless of the rules. Hence \kanjishape{it} produces a warning
\begin{verbatim}
Font shape `JY3/mc/m/it' undefined
using `JY3/mc/m/n' instead on ....
\end{verbatim}
which is not produced by \fontshape{it}.

\DeclareAlternateKanjiFont
As \latexdeclarealtfont (Subsection 10.5), characters in ⟨range⟩ of the Japanese font (we say the base font) which specified by first 4 arguments are typeset by the Japanese font which specified by fifth to eighth arguments (we say the alternate font). An example is shown in Figure 11.
日本国民は、正当に選挙された国会における代表者を通じて行動し、……

Figure 11. An example of \DeclareAlternateKanjiFont

- In \ltjdeclarealtfont, the base font and the alternate font must be already defined. But this \DeclareAlternateKanjiFont is not so. In other words, \DeclareAlternateKanjiFont is effective only after current Japanese font is changed, or only after \selectfont is executed.

... 

Furthermore, Lua\TeX-ja applies patches which enables NFSS2 commands, such as \DeclareSymbolFont and \SetSymbolFont, to specify Japanese fonts as math fonts.

Specifying disablejfam option in \usepackage prevents applying these patches. Hence one cannot write Japanese Characters in math mode directly if disablejfam option is specified. The code below does not work either:

\DeclareSymbolFont{mincho}{JY3}{mc}{m}{n}
\DeclareSymbolFontAlphabet{\mathmc}{mincho}

11.3 Detail of \fontfamily command

In this subsection, we describe when \fontfamily\{family\} changes current Japanese/alphabetic font family. Basically, current Japanese font family is changed to \{family\} if it is recognized as a Japanese font family, and similar with alphabetic font family. There is a case that current Japanese/alphabetic font family are both changed to \{family\}, and another case that \{family\} isn’t recognized as a Japanese/alphabetic font family either.

■ Recognition as Japanese font family First, Whether Japanese font family will be changed is determined in following order. This order is very similar to \fontfamily in p\TeX-\varepsilon, but we re-implemented in Lua. We use an auxiliary list $N_J$.

1. If the family \{family\} has been defined already by \DeclareKanjiFamily, \{family\} is recognized as a Japanese font family. Note that \{family\} need not be defined under current Japanese font encoding.

2. If the family \{family\} has been listed in a list $N_J$, this means that \{family\} is not a Japanese font family.

3. If the luatexja-fontspec package is loaded, we stop here, and \{family\} is not recognized as a Japanese font family.

If the luatexja-fontspec package is not loaded, now Lua\TeX-ja looks whether there exists a Japanese font encoding \{enc\} such that a font definition named \{enc\}\{family\}.fd (the file name is all lowercase) exists. If so, \{family\} is recognized as a Japanese font family (the font definition file won’t be loaded here). If not, \{family\} is not a Japanese font family, and \{family\} is appended to the list $N_J$.

■ Recognition as alphabetic font family Next, whether alphabetic font family will be changed is determined in following order. We use auxiliary lists $F_A$ and $N_A$.

1. If the family \{family\} has been listed in a list $F_A$, \{family\} is recognized as an alphabetic font family.
Table 15. strut

<table>
<thead>
<tr>
<th>box</th>
<th>direction</th>
<th>width</th>
<th>height</th>
<th>depth</th>
<th>user command</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ystrutbox</td>
<td>yoko</td>
<td>0</td>
<td>0.7 \baselineskip</td>
<td>0.3 \baselineskip</td>
<td>\ystrut</td>
</tr>
<tr>
<td>\tstrutbox</td>
<td>tate, utod</td>
<td>0</td>
<td>0.5 \baselineskip</td>
<td>0.5 \baselineskip</td>
<td>\tstrut</td>
</tr>
<tr>
<td>\dstrutbox</td>
<td>dtou</td>
<td>0</td>
<td>0.7 \baselineskip</td>
<td>0.3 \baselineskip</td>
<td>\dstrut</td>
</tr>
<tr>
<td>\zstrutbox</td>
<td></td>
<td>0</td>
<td>0.7 \baselineskip</td>
<td>0.3 \baselineskip</td>
<td>\zstrut</td>
</tr>
</tbody>
</table>

2. If the family \textit{family} has been listed in a list \textit{N}_A, this means that \textit{family} is not an alphabetic font family.

3. If there exists an alphabetic font encoding such that the family \textit{family} has been defined under it, \textit{family} is recognized as an alphabetic font family, and to memorize this, \textit{family} is appended to the list \textit{F}_A.

4. Now Lua\TeX-ja looks whether there exists an alphabetic font encoding \textit{enc} such that a font definition named \texttt{\textfamily{family}.fd} (the file name is all lowercase) exists. If so, current alphabetic font family will be changed to \textit{family} (the font definition file won’t be loaded here). If not, current alphabetic font family won’t be changed, and \textit{family} is appended to the list \textit{N}_A.

Also, each call of \texttt{\DeclareFontFamily} after loading of Lua\TeX-ja makes the second argument \textit{family} is appended to the list \textit{F}_A.

The above order is very similar to \texttt{\fontfamily} in pLa\TeX 2\epsilon, but more complicated (clause 3.). This is because pLa\TeX 2\epsilon is a format however Lua\TeX-ja is not, hence Lua\TeX-ja does not know calls of \texttt{\DeclareFontFamily} before itself is loaded.

\textbf{Remarks} Of course, there is a case that \textit{family} is not recognized as a Japanese font family, nor an alphabetic font family. In this case, Lua\TeX-ja treats “the argument \textit{family} is wrong”, so set both current alphabetic and Japanese font family to \textit{family}, to use the default family for font substitution.

11.4 Notes on \texttt{\DeclareTextSymbol}

From \texttt{\LaTeX} 2017/01/01, the standard encoding of Lua\TeX is changed to the TU encoding. This means that symbols defined by T1 and TS1 encodings can be used without loading any package. To produce these symbols in alphabetic fonts in Lua\TeX-ja, Lua\TeX-ja patches \texttt{\DeclareTextSymbol}, and reloads tuenc.def.

Under original definition of \texttt{\DeclareTextSymbol}, internal commands which is defined by \texttt{\DeclareTextSymbol} (such as \texttt{T1\textquotedblleft}) are chardef tokens. However, this no longer holds in Lua\TeX-ja; for example, the meaning of \texttt{\textquotedblleft} is \texttt{\ltjalchar8220}.

11.5 \texttt{\strutbox}

As p\LaTeX (2017/04/08 or later), \texttt{\strutbox} is a macro which is expanded to one of \texttt{\ystrutbox}, \texttt{\tstrutbox}, and \texttt{\dstrutbox} (all of them are shown in Table 15), according to the current direction. Similarly, \texttt{\strut} now uses one of these boxes.

12 expl3 interface

This section describes expl3 interfaces provided by Lua\TeX-ja. All of them belong to \texttt{\platex} module, since they are provided for compatibility with Japanese p\LaTeX. Note that commands which are marked with dagger (“†”) are additions by Lua\TeX-ja.

\texttt{\platex\direction_yoko}, \texttt{\platex\direction_tate}, \texttt{\platex\direction_dtou}:

Synonyms for \texttt{\yoko}, \texttt{\tate} and \texttt{\dtou}, respectively.

\texttt{\platex\if\direction\yoko_p}:
\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore yoko:TF \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the current direction is \textit{yoko} (horizontal writing).

\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore tate\textunderscore nomath\textunderscore p:¹}\n\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore tate\textunderscore nomath:TF¹ \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the current direction is \textit{tate} (vertical writing).

\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore tate\textunderscore math\textunderscore p:¹}\n\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore tate\textunderscore math:TF¹ \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the current direction is \textit{utod}.

\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore tate:p:¹}\n\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore tate:TF¹ \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the current direction is \textit{tate} or \textit{utod}.

\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore dtou:p:¹}\n\texttt{\textbackslash platex\textunderscore if\textunderscore direction\textunderscore dtou:TF¹ \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the current direction is \textit{dtou}.

\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore yoko\textunderscore p:N \langle box\rangle}\n\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore yoko\textunderscore N:TF \langle box\rangle \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the direction of \texttt{\langle box\rangle} is \textit{yoko}.

\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore tate\textunderscore nomath\textunderscore p:N \langle box\rangle}\n\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore tate\textunderscore nomath\textunderscore N:TF \langle box\rangle \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the direction of \texttt{\langle box\rangle} is \textit{tate}.

\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore tate\textunderscore math\textunderscore p:N \langle box\rangle}\n\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore tate\textunderscore math\textunderscore N:TF \langle box\rangle \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the direction of \texttt{\langle box\rangle} is \textit{utod}.

\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore tate:p:N \langle box\rangle}\n\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore tate\textunderscore N:TF \langle box\rangle \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the direction of \texttt{\langle box\rangle} is \textit{tate} or \textit{utod}.

\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore dtou:p:N \langle box\rangle}\n\texttt{\textbackslash platex\textunderscore if\textunderscore box\textunderscore dtou\textunderscore N:TF \langle box\rangle \{{\texttt{\langle true code\rangle}}\}{\{false code\}}}\\
Tests if the direction of \texttt{\langle box\rangle} is \textit{dtou}.

13 Addon packages

Lua\TeX-ja has several addon packages. These addons are written as \LaTeX\ packages, but luatexja-otf and luatexja-adjust can be loaded in plain Lua\TeX by \texttt{\textbackslash input}.

13.1 luatexja-fontspec

As described in Subsection 3.2, this optional package provides the counterparts for several commands defined in the fontspec package (requires fontspec v2.4). In addition to OpenType font features in the original fontspec, the following “font features” specifications are allowed for the commands of Japanese version:

\texttt{\texttt{\textbackslash CID=\langle name\rangle}, JFM=\langle name\rangle, JFM\textunderscore var=\langle name\rangle}}

These 3 keys correspond to \texttt{\textbackslash cid}, \texttt{\textbackslash jfm} and \texttt{\textbackslash jfmir} keys for \texttt{\jfont} and \texttt{\tfont} respectively. See Subsections 8.1 and 8.4 for details of \texttt{\textbackslash cid}, \texttt{\textbackslash jfm} and \texttt{\textbackslash jfmir} keys.

The \texttt{\textbackslash CID} key is effective only when with \texttt{NoEmbed} described below. The same \texttt{\textbackslash JFM} cannot be used in both horizontal Japanese fonts and vertical Japanese fonts, hence the \texttt{JFM} key will be actually used in \texttt{YokoFeatures} and \texttt{TateFeatures} keys.
横組のテスト
縦組のテスト

Figure 12. An example of TateFeatures etc.

日本国民は、正当に選挙された国会における代表者を通じて行動し、われらとわれらの子孫のために、
諸国民との協和による成果と、わが国全土にわたつて自由のもたらす恵沢を確保し、……

日本国民は、正当に選挙された国会における代表者を通じて行動し、われらとわれらの子孫のために、
諸国民との協和による成果と、わが国全土にわたつて自由のもたらす恵沢を確保し、……

Figure 13. An example of AltFont

NoEmbed

By specifying this key, one can use “name-only” Japanese font which will not be embedded in the
output PDF file. See Subsection 8.4.

Kanjiskip=(bool)

TateFeatures={⟨features⟩}, TateFont=⟨font⟩

The TateFeatures key specifies font features which are only turned on in vertical writing, such as
Style=VerticalKana (vkna feature). Similarly, the TateFont key specifies the Japanese font which
will be used only in vertical writing. A demonstrarion is shown in Figure 12.

YokoFeatures={⟨features⟩}

The YokoFeatures key specifies font features which are only turned on in horizontal writing. A
demonstration is shown in Figure 12.

AltFont

As \cite{declarealtfont} (Subsection 10.5) and \cite{declareAlteKanjiFont} (Subsection 11.2), with
this key, one can typeset some Japanese characters by a different font and/or using different features.
The AltFont feature takes a comma-separated list of comma-separated lists, as the following:

\begin{verbatim}
AltFont = { ...
    { Range={range}, ⟨features⟩ },
    { Range={range}, Font={font name}, ⟨features⟩ },
    { Range={range}, Font={font name} },
    ...
}
\end{verbatim}

Each sublist should have the Range key (sublist which does not contain Range key is simply ignored).
A demonstrarion is shown in Figure 13.
**Remark on AltFont, YokoFeatures, TateFeatures keys**

In AltFont, YokoFeatures, TateFeatures keys, one cannot specify per-shape settings such as BoldFeatures. For example,

```
AltFont = {
 { Font=HogeraMin-Light, BoldFont=HogeraMin-Bold,
 Range="3000-"30FF, BoldFeatures={Color=FF1900} }
}
```

does *not* work. Instead, one have to write

```
UprightFeatures = {
 AltFont = { { Font=HogeraMin-Light, Range="3000-"30FF, } },
},
BoldFeatures = {
 AltFont = { { Font=HogeraMin-Bold, Range="3000-"30FF, Color=FF1900 } },
}
```

On the other hand, YokoFeatures, TateFeatures and TateFont keys can be specified in each list in the AltFont key. Also, one can specify AltFont inside YokoFeatures, TateFeatures.

Note that features which are specified in YokoFeatures and TateFeatures are always interpreted *after* other "direction-independent" features. This explains why \addjfontfeatures at line 6 in Figure 12 has no effect, because a color specification is already done in YokoFeatures and TateFeatures keys.

### 13.2 luatexja-otf

This optional package supports typesetting glyphs by specifying a CID number. The package luatexja-otf offers the following 2 low-level commands:

```
\CID{(number)}
```

Typeset a glyph whose CID number is *(number)*. If the Japanese font is neither Adobe-Japan1, Adobe-GB1, Adobe-CNS1, Adobe-Korea1, nor Adobe-KR CID-keyed font, Lua\TeX-ja treats that *(number)* is a CID number of Adobe-Japan1 character collection, and tries to typeset a "most suitable glyph".

Note that if the Japanese font is loaded using the HarfBuzz library, this \CID command does not work.

```
\UTF{(hex_number)}
```

Typeset a character whose character code is *(hex_number)* (in hexadecimal). This command is similar to \char"(hex_number)" , but please remind remarks below.

This package automatically loads luatexja-ajmacros.sty, which is slightly modified version of ajmacros.sty. Hence one can use macros which are defined in ajmacros.sty, such as \aj半角.

**Remarks**  Characters by \CID and \UTF commands are different from ordinary characters in the following points:

- Always treated as J\textit{Achars}.
- In vertical direction, \texttt{vert/vert2} feature are automatically applied to characters by \UTF, regardless these feature are not activated in current Japanese font.
- Processes for supporting other OpenType features (for example, glyph replacement and kerning) by the luatotfload package is not performed to these characters.

**Additional syntax of JFM**  The package luatexja-otf extends the syntax of JFM; the entries of \texttt{chars} table in JFM now allows a string in the form 'AJ1-xxx', which stands for the character whose CID number in Adobe-Japan1 is xxx.

This extended notation is used in the standard JFM \texttt{jfm-ujis.1ua} to typeset halfwidth Hiragana glyphs (CID 516–598) in halfwidth.
The value of \texttt{kanjiskip} is 0 \texttt{pt} + \frac{1}{5} \texttt{em} in this figure, for making the difference obvious.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure14.png}
\caption{Line adjustment}
\end{figure}

13.3 \texttt{luatexja-adjust}

(see Japanese version of this manual)

13.4 \texttt{luatexja-ruby}

This addon package provides functionality of “ruby” (furigana) annotations using callbacks of Lua\TeX\-ja. There is no detailed manual of \texttt{luatexja-ruby.sty} in English. (Japanese manual is another PDF file, \texttt{luatexja-ruby.pdf}.)

**Group-ruby** By default, ruby characters (the second argument of \texttt{\ruby}) are attached to base characters (the first argument), as one object. This type of ruby is called group-ruby.

\begin{verbatim}
1. 東西線\ruby{妙典}{みようでん}駅は……
2. 東西線の\ruby{妙典}{みようでん}駅は……
3. 東西線の\ruby{葛西}{かさい}駅は……
4. 東西線\ruby{葛西}{かさい}駅は……
\end{verbatim}

As the above example, ruby hangover is allowed on the Hiragana before/after its base characters.

**Mono-ruby** To attach ruby characters to each base characters (mono-ruby), one should use \texttt{\ruby} multiple times:

\begin{verbatim}
1. 東西線の\ruby{妙}{みよう}{でん}駅は……
2. 東西線の\ruby{妙}{みよう}{でん}駅は……
\end{verbatim}

**Jukugo-ruby** Vertical bar \texttt{|} denotes a boundary of groups.

\begin{verbatim}
1. \ruby{妙}{みよう}{でん}
2. \ruby{葛}{かさい}
3. \ruby{妙}{みよう}{でん}
4. \ruby{妙}{みよう}{でん}
\end{verbatim}

If there are multiple groups in one \texttt{\ruby} call, A linebreak between two groups is allowed.

\begin{verbatim}
1. \vbox{\hspace=6\zw\noindent
2. \hbox to 2.5\zw{}}\ruby{京急}{かま}{蒲田}{かいゆう}{きま}{た}
3. \hbox to 2.5\zw{}}\ruby{京急}{かま}{蒲田}{かいゆう}{きま}{た}
4. \hbox to 3\zw{}}\ruby{京急}{かま}{蒲田}{かいゆう}{きま}{た}
\end{verbatim}

If the width of ruby characters are longer than that of base characters, \texttt{\ruby} automatically selects the appropriate form among the line-head form, the line-middle form, and the line-end form.

\begin{verbatim}
1. \vbox{\hspace=8\zw\noindent
2. \null\kern3\zw……を\ruby{承}{うけたまわ}る
3. \kern1\zw……を\ruby{承}{うけたまわ}る
4. \null\kern3\zw……を\ruby{承}{うけたまわ}る
\} 京急蒲田……を 承る
\end{verbatim}

\footnote{Useful macros by iNOUE Koich!, for the japanese-off package.}
13.5 \texttt{l1tjext.sty}

\LaTeX{} supplies additional macros for vertical writing in the \texttt{plext} package. The \texttt{l1tjext} package which we want to describe here is the \LaTeX{}-ja counterpart of the \texttt{plext} package.

**tabular, array, minipage environments**

These environments are extended by \texttt{<dir>}, which specifies the direction, as follows:

\begin{verbatim}
\texttt{\begin{tabular}<dir>}{table spec} ... \end{tabular}}
\texttt{\begin{array}<dir>}{table spec} ... \end{array}}
\texttt{\begin{minipage}<dir>}{width} ... \end{minipage}}
\end{verbatim}

This option permits one of the following five values. If none of them is specified, the direction inside the environment is same as that outside the environment.

- \texttt{y} \textit{yoko} direction (horizontal writing)
- \texttt{t} \textit{tate} direction (vertical writing)
- \texttt{z} \textit{utod} direction if direction outside the env. is \textit{tate}.
- \texttt{d} \textit{dtou} direction
- \texttt{u} \textit{utod} direction

\begin{verbatim}
\parbox<dir>{width}{contents} \parbox command is also extended by \texttt{<dir>}.
\end{verbatim}

This command typeset \texttt{contents} in LR-mode, in \texttt{dir} direction. If \texttt{width} is positive, the width of the box becomes this \texttt{width}. In this case, \texttt{contents} will be aligned to left (when \texttt{pos} is 1), center (c), or right (r).

**picture environment**

\texttt{picture} environment also extended by \texttt{<dir>}, as follows:

\begin{verbatim}
\texttt{\begin{picture} \end{picture}}
\end{verbatim}

\begin{verbatim}
\rensuji{pos}{contents}, \rensujiskip
\end{verbatim}

\begin{verbatim}
\Kanji{counter_name}
\end{verbatim}

\begin{verbatim}
\kasen{contents}, \bou{contents}, \boutenchar
\end{verbatim}

参照番号

13.6 \texttt{luatexja-preset}

As described in Subsection 3.3, One can load the \texttt{luatexja-preset} package to use several "presets" of Japanese fonts. This package provides functions in a part of \texttt{japanese-otf} package (changing fonts) and a part of \texttt{PXchfon} package (presets) by Takayuki Yato.

Options which are given in \texttt{\usepackage} but not described in this subsection are simply passed to the \texttt{luatexja-fontspec}\textsuperscript{13}. For example, the line 5 in below example is equivalent to lines 1–3.

\begin{verbatim}
\usepackage[no-math]{fontspec}
\usepackage[match]{luatexja-fontspec}
\usepackage[kozuka-pr6n]{luatexja-preset}
\end{verbatim}

\begin{verbatim}
\usepackage[no-math,match,kozuka-pr6n]{luatexja-preset}
\end{verbatim}

\textsuperscript{13}if \texttt{nfssonly} option is \textit{not} specified; in this case these options are simply ignored.
13.6.1 General Options

fontspec (enabled by default)
With this option, Japanese fonts are selected using functionality of the \fontspec package. This means that the fontspec package is automatically loaded by this package.
If you need to pass some options to fontspec, you can load fontspec manually before \luatexja-preset:
\usepackage[no-math]{fontspec}
\usepackage[...]{luatexja-preset}

\texttt{nfssonly}
With this option, selecting Japanese fonts won’t be performed using the functionality of the fontspec package, but only standard NFSS2 (hence without \addfontfeatures etc.). This option is ignored when \luatexja-fontspec package is loaded.
When this option is specified, fontspec and \luatexja-fontspec are not loaded by default. Nevertheless, the packagefontspec can coexist with the option, as the following:
\usepackage{fontspec}
\usepackage[hiragino-pron,nfssonly]{luatexja-preset}

In this case, one can use \setmainfont etc. to select alphabetic fonts.

\texttt{match}
If this option is specified, usual family-changing commands such as \rmfamily, \textrm, \textsffamily, ... also change Japanese font family. This option is passed to \luatexja-fontspec, if fontspec option is specified.

\texttt{nodeluxe} (enabled by default)
The negation of \texttt{deluxe} option. Use one-weighted \texttt{mincho} and \texttt{gothic} font families. This means that \texttt{\mcfamily\ltseries}, \texttt{\gcfamily\ltfamily\mdseries} and \texttt{\gcfamily\gtfamily\mdseries} use the same font.

\texttt{deluxe}
Use the mincho family with three weights (light, medium, and bold), the gothic family with three weights (medium, bold, and extra bold), and \texttt{rounded gothic}\footnote{Provided by \texttt{\mgfamily} and \texttt{\textmg}, because “rounded gothic” is called \texttt{maru gothic}（丸ゴシック）in Japanese.}. Mincho light and gothic extra bold can be by \texttt{\mcfamily\ltseries} and \texttt{\gcfamily\gtfamily\ebseries}, respectively.

- Some presets do not have the light weight of mincho. In this case, we substitute the medium weight for the light weight.
- \texttt{\luatexja-preset} does not produce an error (only produces a warning), even if (one of) fonts for \texttt{\mcfamily\ltseries}, \texttt{\gcfamily\gtfamily\ebseries}, \texttt{\mgfamily} do not exist.

\texttt{expert}
Use horizontal/vertical kana alternates, and define a command \texttt{\rubyfamily} to use kana characters designed for ruby.

\texttt{bold}
Substitute bold series of gothic for medium series of gothic and bold series of mincho. If \texttt{nodeluxe} option is enabled, medium series of gothic is also changed, since we use same font for both series of gothic.

\texttt{jis90, 90jis}
Use JIS X 0208:1990 glyph variants if possible.

\texttt{jis2004, 2004jis}
Use JIS X 0213:2004 glyph variants if possible.

\texttt{jfm_yoko=(jfm)}
Use the JFM \texttt{jfm-(jfm).lua} for horizontal direction, instead of \texttt{jfm-ujis.lua} (default JFM).

\texttt{jfm_tate=(jfm)}
Use the JFM \texttt{jfm-(jfm).lua} for vertical direction, instead of \texttt{jfm-ujisv.lua} (default JFM).
jis Same as jfm.yoko=jis.

Note that jis98, @jis, jis2004 and 2004jis only affect with mincho, gothic (and, possibly rounded gothic) families defined by this package. We didn’t taken account of when more than one options among them are specified.

## 13.6.2 Presets which support multi weights

Besides bizud, haranoaji, morisawa-pro, and morisawa-pr6n presets, fonts are specified by font name, not by file name. In following tables, starred fonts (e.g. KozGo...-Regular) are used for medium series of gothic, if and only if `deluxe` option is specified.

**kozuka-pro** Kozuka Pro (Adobe-Japan1-4) fonts.
**kozuka-pr6** Kozuka Pr6 (Adobe-Japan1-6) fonts.
**kozuka-pr6n** Kozuka Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

Kozuka Pro/Pr6N fonts are bundled with Adobe’s software, such as Adobe InDesign. There is not rounded gothic family in Kozuka fonts.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>kozuka-pro</th>
<th>kozuka-pr6</th>
<th>kozuka-pr6n</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>light</td>
<td>KozMinPro-Light</td>
<td>KozMinProVI-Light</td>
<td>KozMinPr6N-Light</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>KozMinPro-Regular</td>
<td>KozMinProVI-Regular</td>
<td>KozMinPr6N-Regular</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>KozMinPro-Bold</td>
<td>KozMinProVI-Bold</td>
<td>KozMinPr6N-Bold</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>KozGoPro-Regular*</td>
<td>KozGoProVI-Regular*</td>
<td>KozGoPr6N-Regular*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KozGoPro-Medium</td>
<td>KozGoProVI-Medium</td>
<td>KozGoPr6N-Medium</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>KozGoPro-Bold</td>
<td>KozGoProVI-Bold</td>
<td>KozGoPr6N-Bold</td>
</tr>
<tr>
<td></td>
<td>extra bold</td>
<td>KozGoPro-Heavy</td>
<td>KozGoProVI-Heavy</td>
<td>KozGoPr6N-Heavy</td>
</tr>
</tbody>
</table>

**hiragino-pro** Hiragino Pro (Adobe-Japan1-5) fonts.
**hiragino-pron** Hiragino PrOn (Adobe-Japan1-5, JIS04-savvy) fonts.

Hiragino fonts (except Hiragino Mincho W2) are bundled with Mac OS X 10.5 or later. Note that fonts for gothic extra bold (HiraKakuStd[N]-W8) only contains characters in Adobe-Japan1-3 character collection, while others contains those in Adobe-Japan1-5 character collection.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>hiragino-pro</th>
<th>hiragino-pron</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>light</td>
<td>Hiragino Mincho Pro W2</td>
<td>Hiragino Mincho ProN W2</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>Hiragino Mincho Pro W3</td>
<td>Hiragino Mincho ProN W3</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>Hiragino Mincho Pro W6</td>
<td>Hiragino Mincho ProN W6</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>Hiragino Kaku Gothic Pro W3*</td>
<td>Hiragino Kaku Gothic ProN W3*</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>Hiragino Kaku Gothic Pro W6</td>
<td>Hiragino Kaku Gothic ProN W6</td>
</tr>
<tr>
<td></td>
<td>extra bold</td>
<td>Hiragino Kaku Gothic Std W8</td>
<td>Hiragino Kaku Gothic Std N W8</td>
</tr>
<tr>
<td>rounded gothic</td>
<td></td>
<td>Hiragino Maru Gothic Pro W4</td>
<td>Hiragino Maru Gothic ProN W4</td>
</tr>
</tbody>
</table>

**bizud** BIZ UD fonts (by Morisawa Inc.) bundled with Windows 10 October 2018 Update.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>BIZ-UDMinchoM.ttc</td>
</tr>
<tr>
<td>gothic</td>
<td>BIZ-UDGothicR.ttc</td>
</tr>
<tr>
<td></td>
<td>BIZ-UDGothicB.ttc</td>
</tr>
<tr>
<td></td>
<td>BIZ-UDGothicB.ttc</td>
</tr>
<tr>
<td>rounded gothic</td>
<td>BIZ-UDGothicB.ttc</td>
</tr>
</tbody>
</table>
morisawa-pro Morisawa Pro (Adobe-Japan1-4) fonts.
morisawa-pr6n Morisawa Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>morisawa-pro</th>
<th>morisawa-pr6n</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>medium</td>
<td>A-OTF-RyuminPro-Light.otf</td>
<td>A-OTF-RyuminPr6N-Light.otf</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>A-OTF-FutoMinA101Pro-Bold.otf</td>
<td>A-OTF-FutoMinA101Pr6N-Bold.otf</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>A-OTF-GothicBBBPro-Medium.otf</td>
<td>A-OTF-GothicBBBPr6N-Medium.otf</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>A-OTF-FutoGoB101Pro-Bold.otf</td>
<td>A-OTF-FutoGoB101Pr6N-Bold.otf</td>
</tr>
<tr>
<td></td>
<td>extra bold</td>
<td>A-OTF-MidashiGoPro-MB31.otf</td>
<td>A-OTF-MidashiGoPr6N-MB31.otf</td>
</tr>
<tr>
<td>rounded gothic</td>
<td></td>
<td>A-OTF-Jun101Pro-Light.otf</td>
<td>A-OTF-ShinMGoPr6N-Light.otf</td>
</tr>
</tbody>
</table>

yu-win Yu fonts bundled with Windows 8.1.
yu-win10 Yu fonts bundled with Windows 10.
yu-osx Yu fonts bundled with OSX Mavericks.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>yu-win</th>
<th>yu-win10</th>
<th>yu-osx</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>light</td>
<td>YuMincho-Light</td>
<td>YuMincho-Light</td>
<td>(YuMincho Medium)</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>YuMincho-Regular</td>
<td>YuMincho-Regular</td>
<td>YuMincho Medium</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>YuMincho-DemiBold</td>
<td>YuMincho-DemiBold</td>
<td>YuMincho Demibold</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>YuGothic-Regular*</td>
<td>YuGothic-Regular*</td>
<td>YuGothic Medium*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YuGothic-Regular*</td>
<td>YuGothic-Medium*</td>
<td>YuGothic Medium</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>YuGothic-Bold</td>
<td>YuGothic-Bold</td>
<td>YuGothic Bold</td>
</tr>
<tr>
<td></td>
<td>extra bold</td>
<td>YuGothic-Bold</td>
<td>YuGothic-Bold</td>
<td>YuGothic Bold</td>
</tr>
<tr>
<td>rounded gothic</td>
<td></td>
<td>YuGothic-Bold</td>
<td>YuGothic-Bold</td>
<td>YuGothic Bold</td>
</tr>
</tbody>
</table>

moga-mobo MogaMincho, MogaGothic, and MoboGothic.
moga-mobo-ex MogaExMincho, MogaExGothic, and MoboExGothic.

These fonts can be downloaded from http://yozvox.web.fc2.com/.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>default, 90jis option</th>
<th>jis2004 option</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>medium</td>
<td>Moga90Mincho</td>
<td>MogaMincho</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>Moga90Mincho Bold</td>
<td>MogaMincho Bold</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>Moga90Gothic</td>
<td>MogaGothic</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>Moga90Gothic Bold</td>
<td>MogaGothic Bold</td>
</tr>
<tr>
<td></td>
<td>extra bold</td>
<td>Moga90Gothic Bold</td>
<td>MogaGothic Bold</td>
</tr>
<tr>
<td>rounded gothic</td>
<td></td>
<td>Mobo90Gothic</td>
<td>MoboGothic</td>
</tr>
</tbody>
</table>

When moga-mobo-ex is specified, the font "MogaEx90Mincho" etc. are used.

ume Ume Mincho and Ume Gothic.

These fonts can be downloaded from https://ja.osdn.net/projects/ume-font/wiki/FrontPage.
sourcehan Source Han Serif and Source Han Sans fonts (Language-specific OTF or OTC)
sourcehan-jp Source Han Serif JP and Source Han Sans JP fonts (Region-specific Subset OTF)

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>sourcehan</th>
<th>sourcehan-jp</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>light</td>
<td>Source Han Serif Light</td>
<td>Source Han Serif JP Light</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>Source Han Serif Regular</td>
<td>Source Han Serif JP Regular</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>Source Han Serif Bold</td>
<td>Source Han Serif JP Bold</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>Source Han Sans Regular*</td>
<td>Source Han Sans JP Regular*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source Han Sans Medium</td>
<td>Source Han Sans JP Medium</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>Source Han Sans Bold</td>
<td>Source Han Sans JP Bold</td>
</tr>
<tr>
<td></td>
<td>extra bold</td>
<td>Source Han Sans Heavy</td>
<td>Source Han Sans JP Heavy</td>
</tr>
<tr>
<td>rounded gothic</td>
<td></td>
<td>Source Han Sans Medium</td>
<td>Source Han Sans JP Medium</td>
</tr>
</tbody>
</table>

noto-otc Noto Serif CJK and Noto Sans CJK fonts (OTC)
noto-otf, noto Noto Serif CJK and Noto Sans CJK fonts (Language-specific OTF)
noto-jp Noto Serif CJK and Noto Sans CJK fonts (Region-specific Subset OTF)

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>noto-otc</th>
<th>noto-otf, noto</th>
<th>noto-jp</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>light</td>
<td>Noto Serif CJK Light</td>
<td>Noto Serif CJK JP Light</td>
<td>Noto Serif JP Light</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>Noto Serif CJK Regular</td>
<td>Noto Serif CJK JP Regular</td>
<td>Noto Serif JP Regular</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>Noto Sans CJK Regular*</td>
<td>Noto Sans CJK JP Regular*</td>
<td>Noto Sans JP Regular*</td>
</tr>
</tbody>
</table>

haranoaji Harano Aji Fonts.

These fonts can be downloaded from https://github.com/trueroad/HaranoAjiFonts. There is not rounded gothic family in Harano Aji Fonts.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>haranoaji</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>light</td>
<td>HaranoAjiMincho-Light.otf</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>HaranoAjiMincho-Regular.otf</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>HaranoAjiMincho-Bold.otf</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>HaranoAjiGothic-Regular.otf*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HaranoAjiGothic-Medium.otf</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>HaranoAjiGothic-Bold.otf</td>
</tr>
<tr>
<td></td>
<td>extra bold</td>
<td>HaranoAjiGothic-Heavy.otf</td>
</tr>
<tr>
<td>rounded gothic</td>
<td></td>
<td>HaranoAjiGothic-Medium.otf</td>
</tr>
</tbody>
</table>

13.6.3 Presets which do not support multi weights

Next, we describe settings for using only single weight.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>noembed</th>
<th>ipa</th>
<th>ipaex</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>Ryumin-Light (non-embedded)</td>
<td>IPA Mincho</td>
<td>IPAX Mincho</td>
<td>MS Mincho</td>
<td></td>
</tr>
<tr>
<td>gothic</td>
<td>GothicBBB-Medium (non-embedded)</td>
<td>IPA Gothic</td>
<td>IPAX Gothic</td>
<td>MS Gothic</td>
<td></td>
</tr>
</tbody>
</table>
13.6.4 Presets which use HG fonts

We can use HG fonts bundled with Microsoft Office for realizing multiple weights. In the table below, starred fonts (e.g., IPA Gothic*) are used only if jis2004 or node luxe option is specified.

<table>
<thead>
<tr>
<th>family</th>
<th>series</th>
<th>ipa-hg</th>
<th>ipaes-hg</th>
<th>ns-hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>mincho</td>
<td>medium</td>
<td>IPA Mincho</td>
<td>IPAex Mincho</td>
<td>MS Mincho</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>HG Mincho E</td>
<td>HG Mincho E</td>
<td>HG Mincho E</td>
</tr>
<tr>
<td>gothic</td>
<td>medium</td>
<td>IPA Gothic*</td>
<td>IPAex Gothic*</td>
<td>MS Gothic*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HG Gothic M</td>
<td>HG Gothic M</td>
<td>HG Gothic M</td>
</tr>
<tr>
<td></td>
<td>bold</td>
<td>HG Gothic E</td>
<td>HG Gothic E</td>
<td>HG Gothic E</td>
</tr>
<tr>
<td></td>
<td>extra bold</td>
<td>HG Soei Kaku Gothic UB</td>
<td>HG Soei Kaku Gothic UB</td>
<td>HG Soei Kaku Gothic UB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HG Maru Gothic M PRO</td>
<td>HG Maru Gothic M PRO</td>
<td>HG Maru Gothic M PRO</td>
</tr>
</tbody>
</table>

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB, and HG Maru Gothic PRO are internally specified by:

**default** by font name (HGMinchoE, etc.).

**jis90, 98jis** by file name (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.tff).

**jis2004, 2004jis** by file name (hgrme04.ttc, hgrge04.ttc, hgrsgu04.ttc, hgrsmp04.ttf).

13.6.5 Define/Use Custom Presets

From version 20170904.0, one can define new presets using \ltjnewpreset, and use them by \ltjapplypreset. These two commands can only be used in the preamble.

\ltjnewpreset{(name)}{(specification)}

Define new preset (name). This <name> cannot be same as other presets, options described in Sub-subsection 13.6.1, nor following 13 strings:

- mc mc-l mc-m mc-b mc-bx gt gt-u gt-d gt-m gt-b gt-bx gt-eb mg-m

(specification) is a comma-separated list which consists of other presets and/or the following keys:

- **mc-l=(font)** mincho light
- **mc-m=(font)** mincho medium
- **mc-b=(font)** mincho bold
- **mc-bx=(font)** synonym for mc-b=(font)
- **gt-u=(font)** gothic, when deluxe option is not specified.
- **gt-d=(font)** gothic medium, when deluxe option is specified.
- **gt-m=(font)** gothic medium. This key is equivalent to "gt-u=(font), gt-d=(font)".
- **gt-b=(font)** gothic bold
  - Note that this key also specifies mincho bold if bold option is specified.
- **gt-bx=(font)** synonym for gt-b=(font)
- **gt-eb=(font)** gothic extra bold
- **mg-m=(font)** rounded gothic
- **mc=(font)** Equivalent to mc-l=(font), mc-m=(font), mc-b=(font)
- **gt=(font)** Equivalent to gt-u=(font), gt-d=(font), gt-b=(font), gt-eb=(font)

\ltjnewpreset*{(name)}{(specification)}

Almost same as \ltjnewpreset. However, if (name) matches a preset which already defined, this command simply overwrite it.
\texttt{\textbackslash ltjapplypreset\{\textit{name}\}}

Set Japanese font families using preset \textit{name}.

Note that \texttt{\textbackslash ltjnewpreset} does not "expand" the definition to define a preset. This means that one can write as the following:

\texttt{\textbackslash ltjnewpreset\{hoge\}\{piyo,mc-b=HiraMinProN-W6\}}
\texttt{\ltjnewpreset\{piyo\}\{mg-m=HiraMaruProN-W4\}}
\texttt{\ltjapplypreset\{hoge\}}

\textbf{Restrictions} Presets which are defined by \texttt{\textbackslash ltjnewpreset} have following restrictions:

- One cannot specify non-embedded fonts (such as Ryumin-Light).
- Some presets, such as \texttt{ipa-hg}, have a feature that fonts are changed according to whether \texttt{90jis} or \texttt{jis2004} is specified. This feature is not usable in presets which are defined by \texttt{\textbackslash ltjnewpreset}.
Part III
Implementations

14 Storing Parameters

14.1 Used dimensions, attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in Lua\TeX-ja.

\jQ (dimension) \jQ is equal to 1 Q = 0.25 mm, where “Q” (also called “級”) is a unit used in Japanese phototypesetting. So one should not change the value of this dimension.

\jH (dimension) There is also a unit called “歯” which equals to 0.25 mm and used in Japanese phototypesetting. This \jH is the same \dimen register as \jQ.

\ltj@dimen@zw (dimension) A temporal register for the “full-width” of current Japanese font. The command \zw sets this register to the correct value, and “return” this register itself.

\ltj@dimen@zh (dimension) A temporal register for the “full-height” (usually the sum of height of imaginary body and its depth) of current Japanese font. The command \zh sets this register to the correct value, and “return” this register itself.

\jfam (attribute) Current number of Japanese font family for math formulas.

\ltj@curjfnt (attribute) If this attribute is a positive number, it stores the font number of current Japanese font for horizontal direction. If this attribute is negative, it means that the Japanese font for horizontal direction is not loaded—Lua\TeX-ja only knows its size and JFM.

\ltj@curtfnt (attribute) Similar to \ltj@curjfnt, but with current Japanese font for vertical direction.

\ltj@charclass (attribute) The character class of a JAchar. This attribute is only set on a glyph_node which contains a JAchar.

\ltj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point (2^{-16} pt). “unset” means zero.

\ltj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (2^{-16} pt).

\ltj@tablshift (attribute)
\ltj@tkb1shift (attribute)

\ltj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node. 0 means “not allowed”, and the other value (including “unset”) means “allowed”.

\ltj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node. 0 means “not allowed”, and the other value (including “unset”) means “allowed”.

\ltj@icflag (attribute) An attribute for distinguishing “kinds” of a node. One of the following value is assigned to this attribute:

italic (1) Kernels from italic correction (\slash), or from kerning information of a Japanese font. These kerns are “ignored” in the insertion process of JAGlue, unlike explicit \kern.

packed (2)

kinsoku (3) Penalties inserted for the word-wrapping process (kinsoku shori) of Japanese characters.

from_jfm–(from_jfm + 63) (4–67) Glues/kerns from JFM.
kanji_skip (68), kanji_skip_jfm (69) Glues from kanjiskip.
xkanji_skip (70), xkanji_skip_jfm (71) Glues from xkanji_skip.
processed (73) Nodes which are already processed by ....
ic_processed (74) Glues from an italic correction, but already processed in the insertion process of JAgues.
boxbdd (75) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.
special_jaglue (76) Glues from \insert[x]kanjiskip.
\ltj@keat \texttt{\i} (attribute) Where \texttt{i} is a natural number which is less than 7. These 7 attributes store bit vectors indicating which character block is regarded as a block of JAcars.
\ltj@dir (attribute) \texttt{dir_node_auto} (128)
\texttt{dir_node_manual} (256)
\ltjline@endcomment (counter)

Furthermore, LuaTeX-ja uses several user-defined whatsis nodes for internal processing. All those nodes except \texttt{direction} whatsis store a natural number (hence its type is 100). \texttt{direction} whatsis store a node list, hence its type is 110. Their user_id (used for distinguish user-defined whatsis) are allocated by \texttt{luatexbase.newuserwhatsitid}.
inhibitglue Nodes for indicating that \texttt{\inhibitglue} is specified. The value field of these nodes doesn’t matter.
stack_marker Nodes for LuaTeX-ja’s stack system (see the next subsection). The value field of these nodes is current group level.
char_by_cid Nodes for JAcchar which processes by luaotfload won’t be applied, and the character code is stored in the value field. Each node of this type are converted to a \texttt{glyph_node} after processes by luaotfload. Nodes of this type is used by \texttt{\CID} and \texttt{\UTF}.
replace_vs Similar to \texttt{char_by_cid} whatsis above. These nodes are for ALchar which the callback process of luaotfload won’t be applied.
begin_par Nodes for indicating beginning of a paragraph. A paragraph which is started by \texttt{\item} in list-like environments has a horizontal box for its label before the actual contents. So ...
direction

These whatsis will be removed during the process of inserting JAgues.

14.2 Stack system of LuaTeX-ja

\textbf{Background} LuaTeX-ja has its own stack system, and most parameters of LuaTeX-ja are stored in it. To clarify the reason, imagine the parameter \texttt{kanjiskip} is stored by a skip, and consider the following source:

\begin{lstlisting}
\ltjsetparameter{kanjiskip=0pt}ふがふが.\%
\setbox0=\hbox{\%
\ltjsetparameter{kanjiskip=5pt}ほげほげ}
\box0.ぴよぴよ\par
\end{lstlisting}

As described in Subsection 9.1, the only effective value of \texttt{kanjiskip} in an hbox is the latest value, so the value of \texttt{kanjiskip} which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaTeX, this "5 pt" cannot be known from any callbacks. In the \texttt{tex/packaging.w}, which is a file in the source of LuaTeX, there are the following codes:

```
 void package(int c)
 {
 scaled h; /* height of box */
 halfword p; /* first node in a box */
 scaled d; /* max depth */
```
int grp;
grp = cur_group;
d = box_max_depth;

if (cur_list.mode_field == -hmode) {
  cur_box = filtered_hpack(cur_list.head_field,
                           cur_list.tail_field, saved_value(1),
                           saved_level(1), grp, saved_level(2));
  subtype(cur_box) = HLIST_SUBTYPE_HBOX;
}

Notice that unsave() is executed before filtered_hpack(), where hpack_filter callback is executed) here. So "5 pt" in the above source is orphaned at unsave(), and hence it can't be accessed from hpack_filter callback.

■Implementation The code of stack system is based on that in a post of Dev-luatex mailing list. These are two \TeX count registers for maintaining information: \texttt{\@stack} for the stack level, and \texttt{\@group@level} for the \TeX's group level when the last assignment was done. Parameters are stored in one big table named charprop_stack_table, where charprop_stack_table[\textit{i}] stores data of stack level \textit{i}. If a new stack level is created by \texttt{\setparameter}, all data of the previous level is copied.

To resolve the problem mentioned in above paragraph “Background”, Lua\TeX-ja uses another trick. When the stack level is about to be increased, a whatsit node whose type, subtype and value are 44 (user defined), stack_marker and the current group level respectively is appended to the current list (we refer this node by stack_flag). This enables us to know whether assignment is done just inside a hbox. Suppose that the stack level is \textit{s} and the \TeX’s group level is \textit{t} just after the hbox group, then:

- If there is no stack_flag node in the list of the contents of the hbox, then no assignment was occurred inside the hbox. Hence values of parameters at the end of the hbox are stored in the stack level \textit{s}.
- If there is a stack_flag node whose value is \textit{t} + 1, then an assignment was occurred just inside the hbox group. Hence values of parameters at the end of the hbox are stored in the stack level \textit{s} + 1.
- If there are stack_flag nodes but all of their values are more than \textit{t} + 1, then an assignment was occurred in the box, but it is done in more internal group. Hence values of parameters at the end of the hbox are stored in the stack level \textit{s}.

Note that to work this trick correctly, assignments to \texttt{\@stack} and \texttt{\@group@level} have to be local always, regardless the value of \texttt{\globaldefs}. To solve this problem, we use another trick: the assignment \texttt{\directlua{tex.globaldefs=0}} is always local.

14.3 Lua functions of the stack system

In this subsection, we will see how a user use Lua\TeX-ja’s stack system to store some data which obeys the grouping of \TeX.

The following function can be used to store data into a stack:

\begin{verbatim}
luatexja.stack.set_stack_table(index, <any> data)
\end{verbatim}

Any values which except \texttt{nil} and NaN are usable as \texttt{index}. However, a user should use only negative integers or strings as \texttt{index}, since natural numbers are used by Lua\TeX-ja itself. Also, whether \texttt{data} is stored locally or globally is determined by \texttt{luatexja.isglobal} (stored globally if and only if \texttt{luatexja.isglobal == 'global'}). Stored data can be obtained as the return value of

\begin{verbatim}
luatexja.stack.get_stack_table(index, <any> default, <number> level)
\end{verbatim}

where \texttt{level} is the stack level, which is usually the value of \texttt{\@stack}, and \texttt{default} is the default value which will be returned if no values are stored in the stack table whose level is \texttt{level}.

\[\text{[Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.}\]
14.4 Extending Parameters

Keys for \ltjsetparameter and \ltjgetparameter can be extended, as in luatexja-adjust.

Setting parameters  Figure 15 shows the most outer definition of two commands, \ltjsetparameter and \ltjglobalsetparameter. Most important part is the last \setkeys, which is offered by the xkeyval package.

Hence, to add a key in \ltjsetparameter, one only have to add a key whose prefix is ltj and whose family is japaram, as the following.
\define@key[ltj]{japaram}{...}{...}
\ltjsetparameter and \ltjglobalsetparameter automatically sets luatexja.isglobal. Its meaning is the following.

\[ \text{luatexja.isglobal} = \begin{cases} '\text{global}' & \text{(global assignment)}, \\ '...' & \text{(local assignment)}. \end{cases} \]

This is determined not only by command name (\ltjsetparameter or \ltjglobalsetparameter), but also by the value of \globaldefs.

Getting parameters  \ltjgetparameter is implemented by a Lua script.

For parameters that do not need additional arguments, one only have to define a function in the table luatexja.unary_pars. For example, with the following function, \ltjgetparameter{hoge} returns a string 42.

\begin{verbatim}
1 function luatexja.unary_pars.hoge (t)
 2 return 42
3 end
\end{verbatim}

Here the argument of luatexja.unary_pars.hoge is the stack level of Lua\TeX-ja’s stack system (see Subsection 14.2).

On the other hand, for parameters that need an additional argument (this must be an integer), one have to define a function in luatexja.binary_pars first. For example,

\begin{verbatim}
1 function luatexja.binary_pars.fuga (c, t)
 2 return tostring(c) .. ',', .. tostring(42)
3 end
\end{verbatim}

Here the first argument \( t \) is the stack level, as before. The second argument \( c \) is just the second argument of \ltjgetparameter.

For parameters that need an additional argument, one also have to execute the \TeX code like
\begin{verbatim}
\ltj@@decl@array@param{fuga}
\end{verbatim}
to indicate that "the parameter fuga needs an additional argument".

Figure 15. Definition of parameter setting commands
15 Linebreak after a Japanese Character

15.1 Reference: behavior in \texttt{pTeX}

In \texttt{pTeX}, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces in Japanese writings. However, this feature isn’t fully implemented in Lua\texttt{TeX}-ja due to the specification of callbacks in Lua\texttt{TeX}. To clarify the difference between \texttt{pTeX} and Lua\texttt{TeX}, we briefly describe the handling of a line break in \texttt{pTeX}, in this subsection.

\texttt{pTeX}’s input processor can be described in terms of a finite state automaton, as that of \texttt{TeX} in Section 2.5 of [1]. The internal states are as follows:

- State \texttt{N}: new line
- State \texttt{S}: skipping spaces
- State \texttt{M}: middle of line
- State \texttt{K}: after a Japanese character

The first three states—\texttt{N}, \texttt{S}, and \texttt{M}—are as same as \texttt{TeX}’s input processor. State \texttt{K} is similar to state \texttt{M}, and is entered after Japanese characters. The diagram of state transitions are indicated in Figure 16. Note that \texttt{pTeX} doesn’t leave state \texttt{K} after “beginning/ending of a group” characters.

15.2 Behavior in Lua\texttt{TeX}-ja

States in the input processor of Lua\texttt{TeX} is the same as that of \texttt{TeX}, and they can’t be customized by any callbacks. Hence, we can only use \texttt{process\_input\_buffer} and \texttt{token\_filter} callbacks for to suppress a space by a line break which is after Japanese characters.

However, \texttt{token\_filter} callback cannot be used either, since a character in category code 5 (end-of-line) is converted into an space token in the input processor. So we can use only the \texttt{process\_input\_buffer} callback. This means that suppressing a space must be done \textit{just before} an input line is read.

Considering these situations, handling of an end-of-line in Lua\texttt{TeX}-ja are as follows:

- We omitted about category codes 9 (ignored), 14 (comment), and 15 (invalid) from the above diagram. We also ignored the input like “\texttt{^^A}” or “\texttt{^^df}”.
- When a character whose category code is 0 (escape character) is seen by \texttt{TeX}, the input processor scans a control sequence (scan a c.s.). These paths are not shown in the above diagram.
  After that, the state is changed to State \texttt{S} (skipping blanks) in most cases, but to State \texttt{M} (middle of line) sometimes.

Figure 16. State transitions of \texttt{pTeX}’s input processor
A character whose character code is \ltjlineendcomment is appended to an input line, before LuaTeX actually process it, if and only if the following three conditions are satisfied:

1. The category code of \endlinechar is 5 (end-of-line).
2. The category code of \ltjlineendcomment itself is 14 (comment).
3. The input line matches the following "regular expression":
   
   $$(\text{any char})^* (\text{JAchar}) ((\text{catcode} = 1) \cup (\text{catcode} = 2))^*$$

**Remark** The following example shows the major difference from the behavior of \TeX.

\begin{lstlisting}
\fontspec[ Ligatures=TeX]{Linux Libertine O}
\ltjsetparameter{autox-spacing=false}
\ltjsetparameter{jacharrange={-6}}xあ
\ltjsetparameter{jacharrange={+6}}zy
\end{lstlisting}

It is not strange that “あ” does not printed in the above output. This is because \TeX Gyre Termes does not contain “あ”, and because “あ” in line 3 is considered as an **ALchar**.

Note that there is no space before "y" in the output, but there is a space before "u". This follows from following reasons:

- When line 3 is processed by \texttt{process\_input\_buffer} callback, “あ” is considered as an **JAchar**. Since line 3 ends with an **JAchar**, the comment character (whose character code is \ltjlineendcomment) is appended to this line, and hence the linebreak immediately after this line is ignored.
- When line 4 is processed by \texttt{process\_input\_buffer} callback, “い” is considered as an **ALchar**. Since line 4 ends with an **ALchar**, the linebreak immediately after this line emits a space.

### 16 Patch for the listings Package

It is well-known that the listings package outputs weird results for Japanese input. The listings package makes most of letters active and assigns output command for each letter ([2]). But Japanese characters are not included in these activated letters. For \TeX series, there is no method to make Japanese characters active; a patch jlisting.sty ([4]) resolves the problem forcibly.

In Lua\TeX-ja, the problem is resolved by using the \texttt{process\_input\_buffer} callback. The callback function inserts the output command (active character \ltjlineendcomment) before each letter above U+0080. This method can omit the process to make all Japanese characters active (most of the activated characters are not used in many cases).

If the listings package and Lua\TeX-ja were loaded, then the patch \texttt{ltjp-listings} is loaded automatically at \texttt{\begin{document}}.

#### 16.1 Notes and additional keys

**Variation selectors** \texttt{ltjp-listings} add two keys, namely \texttt{vsraw} and \texttt{vscmd}, which specify how variation selectors are treated in \texttt{lstlisting} or other environments. Note that these additional keys are not usable in the preamble, since \texttt{ltjp-listings} is loaded at \texttt{\begin{document}}.

\texttt{vsraw} is a key which takes a boolean value, and its default value is false.

- If the \texttt{vsraw} key is true, then variation selectors are “combined” with the previous character.

\begin{lstlisting}
\begin{lstlisting}[vsraw=true]
葛城市,葛飾区,葛西
\end{lstlisting}
\end{lstlisting}
• If the \texttt{vsraw} key is false, then variation selectors are typeset by an appropriate command, which is specified by the \texttt{vscmd} key. The default setting of the \texttt{vscmd} key produces the following.

\begin{lstlisting}
\begin{itemize}
  \item \texttt{vsraw=false,}
  \item \texttt{vscmd=\ltjlistingsvsstdcmd}
\end{itemize}
\end{lstlisting}

For example, the following code is the setting of the \texttt{vscmd} key in this document.

\begin{lstlisting}
\def\IVSA#1#2#3#4#5{%  
  \hbox to1em{\hss\textcolor{blue}{\raisebox{3.5pt}{\normalfont	tfamily
    \fboxsep=0.5pt\fbox{\hbox to0.75em{\hss\tiny \oalign{0#1#2
cr\hss\}}\hss}}\hss}}}
\end{lstlisting}

The default output command of variation selectors is stored in \texttt{\ltjlistingsvsstdcmd}.

\begin{itemize}
  \item The \texttt{doubleletterspace} key  Even the column format is \texttt{[c]}fixed, sometimes characters are not vertically aligned. The following example is typeset with \texttt{basewidth=2em}, and you'll see the leftmost "H" are not vertically aligned.
\end{itemize}

1. H
2. H H H H :

lltjp-listing adds the \texttt{doubleletterspace} key (not activated by default, for compatibility) to improve the situation, namely doubles inter-character space in each output unit. With this key, the above input now produces better output.

1. H
2. H H H H :

\subsection*{16.2 Class of characters}

Roughly speaking, the listings package processes input as follows:

1. Collects \textit{letters} and \textit{digits}, which can be used for the name of identifiers.
2. When reading an \textit{other}, outputs the collected character string (with modification, if needed).
3. Collects \textit{others}.
4. When reading a \textit{letter} or a \textit{digit}, outputs the collected character string.
5. Turns back to 1.

By the above process, line breaks inside of an identifier are blocked. A flag \texttt{\lst@ifletter} indicates whether the previous character can be used for the name of identifiers or not.

For Japanese characters, line breaks are permitted on both sides except for brackets, dashes, etc. Hence the patch lltjp-listings introduces a new flag \texttt{\lst@ifkanji}, which indicates whether the previous character is a Japanese character or not. For illustration, we introduce following classes of characters:
Note that digits in the listings package can be Letter or Other according to circumstances.

For example, let us consider the case an Open comes after a Letter. Since an Open represents Japanese open brackets, it is preferred to be permitted to insert line break after the Letter. Therefore, the collected character string is output in this case.

The following table summarizes $5 \times 5 = 25$ cases:

<table>
<thead>
<tr>
<th>Next</th>
<th>Letter</th>
<th>Other</th>
<th>Kanji</th>
<th>Open</th>
<th>Close</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>collects</td>
<td>outputs</td>
<td></td>
<td>collects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>outputs</td>
<td>collects</td>
<td>outputs</td>
<td></td>
<td>collects</td>
</tr>
<tr>
<td></td>
<td>outputs</td>
<td>collects</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the above table,

- "outputs" means to output the collected character string (i.e., line breaking is permitted there).
- "collects" means to append the next character to the collected character string (i.e., line breaking is prohibited there).

Characters above or equal to U+0080 except Variation Selectors are classified into above 5 classes by the following rules:

- **ALchars** above or equal to U+0080 are classified as Letter.
- **JAchars** are classified in the order as follows:
  1. Characters whose prebreakpenalty is greater than or equal to 0 are classified as Open.
  2. Characters whose postbreakpenalty is greater than or equal to 0 are classified as Close.
  3. Characters that don’t satisfy the above two conditions are classified as Kanji.

The width of halfwidth kana (U+FF61–U+FF9F) is same as the width of **ALchar**; the width of the other **JAchars** is double the width of **ALchar**.

This classification process is executed every time a character appears in the \texttt{lstlisting} environment or other environments/commands.

17 Cache Management of Lua\TeX-ja

Lua\TeX-ja creates some cache files to reduce the loading time. In a similar way to the \texttt{luaotfload} package:

- Cache files are usually stored in (and loaded from) \texttt{$TEXMFVAR/luatexja/}.
- In addition to caches of the text form (the extension is ".lua.gz", because they are compressed by \texttt{gzip}), caches of the \texttt{binary} (bytecode) form are supported.
  - In loading a cache, the binary cache precedes the text form.
  - When Lua\TeX-ja updates a compressed text cache \texttt{hoge.lua.gz}, its binary version is also updated.
Table 16. cid key and corresponding files

<table>
<thead>
<tr>
<th>cid key</th>
<th>name of the cache</th>
<th>used CMaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe-Japan1-*</td>
<td>ltj-cid-auto-adobe-japan1.{lua.gz,luc}</td>
<td>UniJIS2004-UTF32-* Adobe-Japan1-UCS2</td>
</tr>
<tr>
<td>Adobe-Korea1-*</td>
<td>ltj-cid-auto-adobe-korea1.{lua.gz,luc}</td>
<td>UniKS-UTF32-* Adobe-Korea1-UCS2</td>
</tr>
<tr>
<td>Adobe-GB1-*</td>
<td>ltj-cid-auto-adobe-gb1.{lua.gz,luc}</td>
<td>UniGB-UTF32-* Adobe-GB1-UCS2</td>
</tr>
<tr>
<td>Adobe-CNS1-*</td>
<td>ltj-cid-auto-adobe-cns1.{lua.gz,luc}</td>
<td>UniCNS-UTF32-* Adobe-CNS1-UCS2</td>
</tr>
</tbody>
</table>

17.1 Use of cache

Lua\TeX-ja uses the following cache:

- \texttt{ltj-cid-auto-adobe-japan1.\{lua.gz,luc\}}
  The font table of a CID-keyed non-embedded Japanese font. This is loaded in every run. It is created from three CMaps, UniJIS2004-UTF32-\{H,V\} and Adobe-Japan1-UCS2, and this is why these two CMaps are needed in the first run of Lua\TeX-ja.

Similar caches are created as Table 16, if you specified cid key in \texttt{jfont} to use other CID-keyed non-embedded fonts for Chinese or Korean, as in Page 27.

- \texttt{ltj-kinsoku.luc}
  The bytecode cache which default \texttt{kinsoku} parameters are stored.

- \texttt{ltj-jisx0208.luc}
  The bytecode version of \texttt{ltj-jisx0208.lua}. This is the conversion table between JIS X 0208 and Unicode which is used in Kanji-code conversion commands for compatibility with p\TeX.

- \texttt{ltj-ivd\_aj1.luc}
  The bytecode version of \texttt{ltj-ivd\_aj1.lua}.

- \texttt{extra\_***.\{lua.gz,luc\}}
  This file contains some information (especially for vertical typesetting) about the font ‘***’.

17.2 Internal

Cache management system of Lua\TeX-ja is stored in \texttt{luatexja.base} (\texttt{ltj-base.lua}). There are four public functions for cache management in \texttt{luatexja.base}, where \texttt{(filename)} stands for the file name without suffix:

- \texttt{save\_cache(filename, data)}
  Save a non-nil table \texttt{(data)} into a cache \texttt{(filename)}. Both the compressed text form \texttt{(filename).lua.gz} and its binary version are created or updated.

- \texttt{save\_cache\_luc(filename, data[, serialized\_data])}
  Same as \texttt{save\_cache}, except that only the binary cache is updated. The third argument \texttt{(serialized\_data)} is not usually given. But if this is given, it is treated as a string representation of \texttt{(data)}.

- \texttt{load\_cache(filename, outdate)}
  Load the cache \texttt{(filename)}. \texttt{(outdate)} is a function which takes one argument (the contents of the cache), and its return value is whether the cache is outdated.

\texttt{load\_cache} first tries to read the binary cache \texttt{(filename).luc}. If its contents is up-to-date, \texttt{load\_cache} returns the contents. If the binary cache is not found or its contents is outdated, \texttt{load\_cache} tries to read the compressed text form \texttt{(filename).lua.gz}. Hence, the return value of \texttt{load\_cache} is non-nil, if and only if the updated cache is found.

- \texttt{remove\_cache(filename)}
  Remove the cache \texttt{(filename)}.
References


