
An Improved Environment for Floats∗

Anselm Lingnau
anselm@strathspey.org

2001/11/08

Abstract

This style option improves the interface for defining floating objects such
as figures and tables in LATEX. It adds the notion of a ‘float style’ that
governs appearance of floats. New kinds of floats may be defined using
a \newfloat command analogous to \newtheorem. This style option also
incorporates the functionality of David Carlisle’s style option here, giving
floating environments a [H] option which means ‘PUT IT HERE’ (as op-
posed to the standard [h] option which means ‘You may put it here if you
like’).

1 Introduction
Among the features of LATEX are ‘floating’ figures and tables that drift from where
they appear in the input text to, say, the top of a page. The contents and for-
matting of floats is pretty much up to the user, except that there is a \caption
command that governs formatting of the caption — it is centered if it is short,
and formatted as a paragraph if it is longer than a single line of text. Sometimes
other types of floating objects, e.g., algorithms or programs, are desirable, but
they must be defined by analogy to the existing floats since there is no simple
command for doing this. This goes beyond the knowledge or inclination of the
average LATEX user.

In this style option, I present an interface to floating objects that attempts to
fix some of these shortcomings. First of all, I introduce the notion of a ‘float style’.
A float style governs the appearance of a class of floats like a page style governs the
appearance of a page (LATEX has page styles plain, empty and headings, among
others). This style option provides some exemplary float styles:

plain This is the float style that LATEX normally applies to its floats, i.e., nothing
in particular. The only difference is that the caption comes out below the
body of the float, regardless of where it is given in the text.

plaintop This is similar to ‘plain’ but the caption always comes out above the
body of the float.

boxed The body of the float is printed inside a box. The caption goes below that
box.

∗This file has version number v1.3d. Part of this style option is based on the here option by
David P. Carlisle (carlisle@cs.man.ac.uk), who also provided helpful criticism.

1

Program 1.1 The first program. This hasn’t got anything to do with the package
but is included as an example. Note the ruled float style.
#include <stdio.h>

int main(int argc, char **argv)
{

int i;
for (i = 0; i < argc; ++i)

printf("argv[%d] = %s\n", i, argv[i]);
return 0;

}

ruled This float style is patterned on the table style of Concrete Mathematics.
The caption is printed at the top of the float, surrounded by rules; another
rule finishes off the float.

To facilitate the definition of new floating objects, float supports the \newfloat
command. This command is comparable to \newtheorem in that it allows the
user to add a new class of floats at the document level. No style option hacking is
necessary. There’s also a \listof command that prints a listing of all the floats
of a given type, like \listoffigures and \listoftables in vanilla LATEX.

2 The User Interface — New Floats
The most important command in float is the \newfloat command. As mentioned\newfloat
above, it is patterned on \newtheorem. The \newfloat command takes three
required and one optional argument; it is of the form

\newfloat{〈type〉}{〈placement〉}{〈ext〉}[〈within〉]
〈type〉 is the ‘type’ of the new class of floats, like program or algorithm. After the
appropriate \newfloat, commands like \begin{program} or \end{algorithm*}
will be available. 〈placement〉 gives the default placement parameters for this class
of floats. The placement parameters are the same as in standard LATEX, i.e., t,
b, p and h for ‘top’, ‘bottom’, ‘page’ and ‘here’, respectively. When LATEX writes
the captions to an auxiliary file for the list of figures (or whatever), it’ll use the
job name followed by 〈ext〉 as a file name. Finally, the optional argument 〈within〉
determines whether floats of this class will be numbered within some sectional unit
of the document. For example, if 〈within〉=chapter, the floats will be numbered
within chapters. (In standard LATEX, this happens with figures and tables in the
report and book document styles.) As an example, Program 1.1 above was created
by a command sequence similar to that shown in the following Example.

2

\floatstyle{ruled}
\newfloat{Program}{tbp}{lop}[section]
. . . loads o’ stuff . . .
\begin{Program}
\begin{verbatim}
. . . program text . . .
\end{verbatim}
\caption{. . . caption . . . }
\end{Program}

Example 2.1: This is another silly floating Example. Except that this one
doesn’t actually float because it uses the [H] optional parameter to appear Here.
(Gotcha.)

The \floatstyle command sets a default float style. This float style will be\floatstyle
used for all the floats that are subsequently defined using \newfloat, until another
\floatstyle command appears. The \floatstyle command takes one argument,
the name of a float style. For instance, \floatstyle{ruled}. Specifying a string
that does not name a valid float style is an error.

The \floatname command lets you define the float name that LATEX uses\floatname
in the caption of a float, i.e., ‘Figure’ for a figure and so on. For example,
\floatname{program}{Program}. The \newfloat command sets the float name
to its argument 〈type〉 if no other name has been specified before.

The \floatplacement command resets the default placement specifier of a\floatplacement
class of floats. E.g., \floatplacement{figure}{tp}.

The \restylefloat command is necessary to change styles for the standard\restylefloat
float types figure and table. Since these aren’t usually defined via \newfloat,
they don’t have a style associated with them. Thus you have to say, for example,

\floatstyle{ruled}
\restylefloat{table}

to have tables come out ruled. The command also lets you change style for floats
that you define via \newfloat, although this is, typographically speaking, not
a good idea. See table 1 for an example. There is a \restylefloat* command
which will restyle an existing float type but will keep the new float style from taking
over the \caption command. In this case the user is responsible for handling their
own captions.

The \listof command produces a list of all the floats of a given class. Its\listof
syntax is

\listof{〈type〉}{〈title〉}
〈type〉 is the float type given in the \newfloat command. 〈title〉 is used for the
title of the list as well as the headings if the current page style includes them.
Otherwise, the \listof command is analogous to the built-in LATEX commands
\listoffigures and \listoftables.

3 The User Interface — [H] Placement Specifier
Many people find LATEX’s float placement specifiers too restrictive. A Commonly
Uttered Complaint (CUC) calls for a way to place a float exactly at the spot where

3

n

(
n

0

) (
n

1

) (
n

2

) (
n

3

) (
n

4

) (
n

5

) (
n

6

) (
n

7

)

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

Table 1: Pascal’s triangle. This is a re-styled LATEX table.

it occurs in the input file, i.e., to not have it float at all. It seems that the [h]
specifier should do that, but in fact it only suggests to LATEX something along the
lines of “put the float here if it’s OK with you”. As it turns out, LATEX hardly
ever feels inclined to actually do that. This situation can be improved by judicious
manipulation of float style parameters.

The same effect can be achieved by changing the actual method of placing
floats. David Carlisle’s here option introduces a new float placement specifier,
namely [H], which, when added to a float, tells LATEX to “put it HERE, period”.
If there isn’t enough space left on the page, the float is carried over to the next
page together with whatever follows, even though there might still be room left
for some of that. This style option provides the [H] specifier for newly defined
classes of floats as well as the predefined figures and tables, thereby superseding
here. David suggests that the here option be withdrawn from the archives in due
course.

The [H] specifier may simply be added to the float as an optional argument,
like all the other specifiers. It may not be used in conjunction with any other
placement specifiers, so [Hhtbp] is illegal. Neither may it be used as the default
placement specifier for a whole class of floats. The following table is defined like
this:

\begin{table}[H]
\begin{tabular}{cl}
\tt t & Top of the page\\
. . . more stuff . . .

(It seems that I have to add some extraneous chatter here just so that the float
actually comes out right in the middle of a printed page. When I LATEXed the
documentation just now it turned out that there was a page break that fell exactly
between the “So now” line and the float. This wouldn’t Prove Anything. Bother.)
So now we have the following float placement specifiers:

t Top of the page
b Bottom of the page
p Page of floats
h Here, if possible
H Here, definitely

4

4 Implementation

4.1 Basics
1 〈∗package〉

In LATEX, floats are assigned ‘type numbers’ that are powers of 2. Since there
are only two classes of floats, their type numbers are hardwired into the document
styles. We need to be somewhat more flexible, and thus we initialize a counter
to hold the next type number to be assigned. This counter will be incremented
appropriately later.

2 \newcounter{float@type}
3 \@ifundefined{c@figure}%
4 {\setcounter{float@type}{1}}%
5 {\setcounter{float@type}{4}}

To warm up, we’ll look at some of the simpler commands first.
\floatstyle The \floatstyle command puts its argument into the \float@style macro as

the name of the new float style. But if the argument doesn’t denote a float style,
an error message is output instead: Each float style 〈style〉 has a corresponding
command \fs@〈style〉 that contains the appropriate declarations. If the control
sequence \fs@〈arg〉 (which goes with the argument 〈arg〉 to \floatstyle) is un-
defined, i.e., equals \relax under \ifx, then the float style 〈arg〉 is unknown, and
we call \float@error{〈arg〉} for the error message.

6 \newcommand\floatstyle[1]{\@ifundefined{fs@#1}%
7 {\float@error{#1}}%
8 {\def\float@style{#1}}}

\float@error Here’s the error message. \@eha is the help message that says ‘Your command
was ignored.’

9 \newcommand\float@error[1]{\PackageError{float}{%
10 Unknown float style ‘#1’
11 }{\@eha}}

The next two commands are even simpler. LATEX says that \fps@〈float〉 con-
tains the default placement specifier for the class of floats 〈float〉. \fname@〈float〉
expands to the name that appears in 〈float〉 captions, e.g., ‘Figure’. (This is our
own definition.)
12 \newcommand\floatname[2]{\@namedef{fname@#1}{#2}}
13 \newcommand\floatplacement[2]{\@namedef{fps@#1}{#2}}

14 \newcommand\floatevery[2]{\csname @float@every@#1\endcsname={#2}}

\restylefloat The \restylefloat command sets up everything so that subsequent commands
like \begin{〈float〉} use the appropriate float style. It defines \fst@〈float〉 to
expand to a command that sets up the currently selected float style (\fs@〈style〉).
Then it defines the commands \begin{〈float〉}, \end{〈float〉}, \begin{〈float〉*}
and \end{〈float〉*}. The \restylefloat* command is like \restylefloat but
will leave the captions of that float type alone.
15 \newcommand\restylefloat{\@ifstar\float@restyle@\float@restyle}
16 \newcommand\float@restyle@[1]{\float@restyle{#1}%
17 \expandafter\let\csname @float@c@#1\endcsname=\@caption}
18 \newcommand\float@restyle[1]{\expandafter\edef\csname
19 fst@#1\endcsname{\expandafter\noexpand\csname

5

20 fs@\float@style\endcsname}%
21 \@namedef{#1}{\@nameuse{fst@#1}%
22 \@float@setevery{#1}\@float{#1}}%
23 \@namedef{#1*}{\@nameuse{fst@#1}%
24 \@float@setevery{#1}\@dblfloat{#1}}%
25 \expandafter\let\csname end#1\endcsname\float@end
26 \expandafter\let\csname end#1*\endcsname\float@dblend
27 \expandafter\let\csname @float@c@#1\endcsname=\float@caption
28 \@ifundefined{@float@every@#1}{%
29 \expandafter\newtoks\csname @float@every@#1\endcsname}{}%
30 \@nameuse{@float@every@#1}={}}

\newfloat Now we can explain how to define a new class of floats. Recall that the three
required arguments to \newfloat are 〈type〉, 〈placement〉 and 〈ext〉, respectively.
First we save the latter two; we also maintain a list of active 〈ext〉s so we can later
iterate over all currently-open lists of floats.
31 \newtoks\float@exts
32 \newcommand\newfloat[3]{\@namedef{ext@#1}{#3}
33 \let\float@do=\relax
34 \xdef\@tempa{\noexpand\float@exts{\the\float@exts \float@do{#3}}}%
35 \@tempa
36 \floatplacement{#1}{#2}%

Then we figure out a default value for the ‘caption name’ of this class of floats.
If the \fname@〈type〉 isn’t already defined, we tentatively use 〈type〉 as the name.
This is convenient if 〈type〉 is, say, Program, since no \floatname command is
necessary at all.
37 \@ifundefined{fname@#1}{\floatname{#1}{#1}}{}

Then we set up the type number for LATEX in \ftype@〈type〉. Afterwards we have
to set the float@type to the next greater power of two, so that it is ready for
the next \newfloat. Fortunately, we just have to double it by adding. We don’t
bother checking for overflow since it is pretty unlikely that somebody will define
25 different classes of floats. Finally, we call \restylefloat to define the style
and commands for this class of floats.
38 \expandafter\edef\csname ftype@#1\endcsname{\value{float@type}}%
39 \addtocounter{float@type}{\value{float@type}}
40 \restylefloat{#1}%

Now all that’s left is to assemble the \fnum@〈type〉 macro that LATEX wants to use
in its captions. Basically it is just ‘caption name’ + ‘counter value’, disguised so
that the command names appear in the definition instead of their expansions.
41 \expandafter\edef\csname fnum@#1\endcsname%
42 {\expandafter\noexpand\csname fname@#1\endcsname{}
43 \expandafter\noexpand\csname the#1\endcsname}

Finally, we have to take care of the optional argument, 〈within〉. If the optional
argument is present, we pass control to \float@newx. Otherwise, we just define
the counter for this class of floats. By default, the numbers come out \arabic.
44 \@ifnextchar[{\float@newx{#1}}%
45 {\@ifundefined{c@#1}{\newcounter{#1}\@namedef{the#1}{\arabic{#1}}}%
46 {}}}

6

\float@newx Here we deal with the optional argument to \newfloat. We have to create a new
counter as per \newcounter{〈type〉} and add that counter to the list of coun-
ters to be reset whenever counter 〈within〉 is stepped. The standard command
\newcounter{〈type〉}[〈within〉] takes care of that. However, we can’t define the
〈type〉 counter if it’s already defined. While this case is simply ignored when
〈within〉 is not present, we issue a warning here since what comes out is probably
not what the user expects.
47 \def\float@newx#1[#2]{\@ifundefined{c@#1}{\newcounter{#1}[#2]%
48 \expandafter\edef\csname the#1\endcsname{%
49 \expandafter\noexpand\csname
50 the#2\endcsname.\noexpand\arabic{#1}}}%
51 {\PackageWarning{float}{Can’t redefine counter variable for #1.}}}

4.2 Adapting LATEX internals
We have to adapt some of LATEX’s internal macros to our needs. There are several
things that have to be changed around in order to provide the functionality of
David Carlisle’s here. The following is thus lifted from here, with changes and
with David’s permission:

\@float@Hx We save the original version of \@xfloat. (This macro is called from \@float,
which we used above to define the environment commands for a new class of floats.)
52 \let\@float@Hx\@xfloat

\@xfloat The new version of \@xfloat looks for a [H] argument. If it is present \@float@HH
is called, otherwise the original macro (renamed to \@float@Hx) is called.
53 \def\@xfloat#1[{\@ifnextchar{H}{\@float@HH{#1}[}{\@float@Hx{#1}[}}

Later on we’ll need a box to save a [H] float.
54 \newsavebox\float@box
55 \newif\if@flstyle

\@float@HH First gobble the [H]. Note that H should not be used in conjunction with the other
placement options, nor as the value of the default placement, as set in \fps@type.
56 \def\@float@HH#1[H]{%

Locally redefine the end of the environment.
57 \expandafter\let\csname end#1\endcsname\float@endH

We don’t get a \@currbox if we don’t actually use the float mechanism. Therefore
we fake one using the \float@box defined above.
58 \let\@currbox\float@box

Now we save the current float class name for use in constructing the \caption.
The caption box (defined below) is initialised to an empty box to avoid trouble
with floats not having a caption. Then we start the box that’ll hold the float itself.
\parindent is set to zero for compatibility with the standard [h] option.
59 \def\@captype{#1}\setbox\@floatcapt=\vbox{}%
60 \expandafter\ifx\csname fst@#1\endcsname\relax
61 \@flstylefalse\else\@flstyletrue\fi
62 \setbox\@currbox\color@vbox\normalcolor
63 \vbox\bgroup \hsize\columnwidth \@parboxrestore
64 \@floatboxreset \@setnobreak

7

The final \ignorespaces is needed to gobble any spaces or newlines after the [H]
tokens.
65 \ignorespaces}

66 \newtoks\@float@everytoks
67 \let\@float@boxreset=\@floatboxreset
68 \def\@floatboxreset{\@float@boxreset\the\@float@everytoks}
69 \def\@float@setevery#1{\@float@everytoks=\@nameuse{@float@every@#1}}

\float@makebox Basically, we must arrange for ‘style commands’ to be executed at certain points
during the generation of the float. LATEX puts a float into a vertical box \@currbox
which it takes off a list of empty boxes for insertions. When the \float@makebox
macro is called, \@currbox contains the complete float, minus the caption — we’ll
see later that we use our own \caption command to put the caption into a \vbox
of its own. This is the only way we can control the position of the caption by the
float style, regardless of where the caption appears in the float’s input text itself.
So the ‘style commands’ are \@fs@pre, which is inserted at the very beginning of
the float, \@fs@mid, which comes between the float and the caption (or the caption
and the float, if captions are put at the top), and \@fs@post, which finishes off the
float. The caption may appear at the top or at the bottom of the float, as defined
by \@fs@iftopcapt. Therefore, before we hand the float to LATEX for positioning,
it is taken apart and reassembled using the style commands.
70 \newcommand\float@makebox[1]{%
71 \vbox{\hsize=#1 \@parboxrestore
72 \@fs@pre\@fs@iftopcapt
73 \ifvoid\@floatcapt\else\unvbox\@floatcapt\par\@fs@mid\fi
74 \unvbox\@currbox
75 \else\unvbox\@currbox
76 \ifvoid\@floatcapt\else\par\@fs@mid\unvbox\@floatcapt\fi
77 \fi\par\@fs@post\vskip\z@}}

\float@end The internal macro \end@float appears here under the name of \float@end.
The main thing which is changed is that we call \float@makebox to reconstruct
the float according to the float style. We want to do exactly what the LATEX
kernel does without copying actual kernel code if we can help it; therefore we
finish off the float using the kernel \@endfloatbox, then replace LATEX’s contents
of the \@currbox with our own processed version, and then hand the thing off
to LATEXagain. Of course we have already done \@endfloatbox, which comes at
the beginning of \end@float, ourselves; therefore we neutralize it before calling
\end@float. This doesn’t matter since we’re in a group anyway (we wanted
to keep the style commands local), so everything is undone at the end of the
environment.
78 \newcommand\float@end{\@endfloatbox
79 \global\setbox\@currbox\float@makebox\columnwidth
80 \let\@endfloatbox\relax\end@float}

\float@endH The \float@endH command is, again, derived from here. It’ll deal correctly with
a non-floating float, inserting the proper amounts of white space above and below.

81 \newcommand\float@endH{\@endfloatbox\vskip\intextsep
82 \if@flstyle\setbox\@currbox\float@makebox\columnwidth\fi
83 \box\@currbox\vskip\intextsep\relax}

8

\float@dblend The \float@dblend command finishes up double-column floats. This uses the
same approach as \float@end above. It seems to work.
84 \newcommand\float@dblend{\@endfloatbox
85 \global\setbox\@currbox\float@makebox\textwidth
86 \let\@endfloatbox\relax\end@dblfloat}

4.3 Captions and lists of floats
Now for the caption routines. We use a box, \@floatcapt, to hold the caption
while the float is assembled.
87 \newsavebox\@floatcapt

\caption This is the only LATEX macro that this document style supersedes. Our \caption
command checks whether there is a custom style defined for the current float
(whose type can be found in \@captype). If so, the caption routines from float are
used, otherwise (or when the float style has been applied via \restylefloat* so
that captions aren’t handled by this package) we call the vanilla LATEX routines.
88 \renewcommand\caption{%
89 \ifx\@captype\@undefined
90 \@latex@error{\noexpand\caption outside float}\@ehd
91 \expandafter\@gobble
92 \else
93 \refstepcounter\@captype
94 \let\@tempf\@caption
95 \expandafter\ifx\csname @float@c@\@captype\endcsname\relax\else
96 \expandafter\expandafter\let
97 \expandafter\@tempf\csname @float@c@\@captype\endcsname\fi\fi
98 \@dblarg{\@tempf\@captype}}

\float@caption The \float@caption macro takes care of entering the caption into the appropriate
listing. It also controls the typesetting of the caption itself, although a style-
dependent macro \@fs@capt is called to handle the specifics. Note that because
the caption is saved in a box instead of being output to the float right away, you
cannot simply put a legend after the caption proper; it has to follow the \caption
command in an optional argument.

First of all, we call \addcontentsline to update the list of floats of this
class. Note that \float@caption is \long to allow for paragraph breaks in its
arguments.
99 \long\def\float@caption#1[#2]#3{\addcontentsline{\@nameuse{ext@#1}}{#1}%

100 {\protect\numberline{\@nameuse{the#1}}{\ignorespaces #2}}

Now we collect the caption proper. The caption name and number are taken from
\fnum@〈float〉, where 〈float〉 is the class of float we’re currently handling.

101 \global\setbox\@floatcapt\vbox\bgroup\@parboxrestore
102 \normalsize\@fs@capt{\@nameuse{fnum@#1}}{\ignorespaces #3}%

Finally we check for the presence of the optional argument. If there is one, we call
\float@ccon to pick it up; otherwise, the \egroup finishes off the box.

103 \@ifnextchar[{\float@ccon}{\egroup}}

\float@ccon The \float@ccon macro expands to the optional argument of a \caption com-
mand, followed by \par\egroup. Note that this precludes using \verb & Co. in

9

the optional argument; the interested reader is urged to fix this problem as an
exercise.

104 \long\def\float@ccon[#1]{#1\par\egroup}

\listof The \listof command reads the desired list of floats from the appropriate aux-
iliary file. The file is then restarted. First of all, we check whether the float style
that’s supposed to be listed is actually defined. If not, we output a \float@error.

105 \newcommand*{\listof}[2]{%
106 \@ifundefined{ext@#1}{\float@error{#1}}{%

All’s well until now. We define the \l@〈float〉 command that LATEX needs for
formatting the list, and then typeset the appropriate list header.

107 \@namedef{l@#1}{\@dottedtocline{1}{1.5em}{2.3em}}%
108 \float@listhead{#2}%

Next we call \@starttoc with the correct file extension to do the actual work. If
\parskip is non-zero, vertical space would be added between the individual list
entries. To avoid this, we zero \parskip locally. This should be done after the
\float@listhead above since \parskip also influences the spacing of headings,
and the listings would look different from other chapters otherwise. (Suggested
by Markus Kohm.)

109 \begingroup\setlength{\parskip}{\z@}%
110 \@starttoc{\@nameuse{ext@#1}}%
111 \endgroup}}

\float@listhead This command generates the beginning of a list of floats. Currently the list appears
at the chapter or the section level, depending on whether chapters are supported
in the document class. According to a suggestion from Markus Kohm, this is now
in a separate command so it can be overridden by other packages. We also use
\MakeUppercase instead of \uppercase; when this piece of code was first written
\MakeUppercase hadn’t been invented yet, and for some reason this never got
updated.

112 \providecommand*{\float@listhead}[1]{%
113 \@ifundefined{chapter}{\def\@tempa{\section*}}%
114 {\def\@tempa{\chapter*}}%
115 \@tempa{#1\@mkboth{\MakeUppercase{#1}}{\MakeUppercase{#1}}}}%

\float@addtolists This command allows LATEX programmers to add something to all currently-
defined lists of floats, such as some extra vertical space at the beginning of a new
chapter in the main text (\float@addtolists{\protect\addvspace{10pt}}),
without knowing exactly which lists of floats are currently being constructed. This
command currently does not operate on the lot and lof lists.

116 \newcommand\float@addtolists[1]{%
117 \def\float@do##1{\addtocontents{##1}{#1}} \the\float@exts}

5 The Float Styles
Finally, we define the standard float styles that were outlined in the Introduction.
Every float style 〈style〉 corresponds to a command \fs@〈style〉 which contains the
definitions of the style commands, namely

10

\@fs@pre top of the float
\@fs@mid between float and caption

\@fs@post bottom of the float
\@fs@capt formatting routine for caption

\@fs@cfont font for caption name & number

\floatc@plain The \floatc@plain macro formats a caption the way LATEX does it: if the caption
is fairly short, it is centered, otherwise it is formatted as a paragraph. The only
difference is that the portion containing the caption name and number uses the
\@fs@captfont.

118 \newcommand\floatc@plain[2]{\setbox\@tempboxa\hbox{{\@fs@cfont #1:} #2}%
119 \ifdim\wd\@tempboxa>\hsize {\@fs@cfont #1:} #2\par
120 \else\hbox to\hsize{\hfil\box\@tempboxa\hfil}\fi}

\fs@plain The plain float style is similar to what LATEX does of its own accord; the only
difference is that the caption is guaranteed to come out at the bottom of the float.

121 \newcommand\fs@plain{\def\@fs@cfont{\rmfamily}\let\@fs@capt\floatc@plain
122 \def\@fs@pre{}\def\@fs@post{}%
123 \def\@fs@mid{\vspace\abovecaptionskip\relax}%
124 \let\@fs@iftopcapt\iffalse}

\fs@plaintop The plaintop float style is similar to the plain float style except that the caption
comes out at the top.

125 \newcommand\fs@plaintop{\fs@plain
126 \def\@fs@mid{\vspace\belowcaptionskip\relax}%
127 \let\@fs@iftopcapt\iftrue}
128 \let\floatc@plaintop=\floatc@plain

\floatc@ruled The \floatc@ruled command is even simpler than the \floatc@plain macro.
The caption is simply printed ‘as is’.

129 \newcommand\floatc@ruled[2]{{\@fs@cfont #1} #2\par}

\fs@ruled In the ruled float style, the caption appears at the top of the float, preceded and
followed by horizontal rules. Another rule followes the whole of the float.

130 \newcommand\fs@ruled{\def\@fs@cfont{\bfseries}\let\@fs@capt\floatc@ruled
131 \def\@fs@pre{\hrule height.8pt depth0pt \kern2pt}%
132 \def\@fs@post{\kern2pt\hrule\relax}%
133 \def\@fs@mid{\kern2pt\hrule\kern2pt}%
134 \let\@fs@iftopcapt\iftrue}

\fs@boxed The boxed float style puts the float into a box (which is slightly larger than the
usual \textwidth). The caption appears below the box.

135 \newcommand\fs@boxed{\def\@fs@cfont{\bfseries}\let\@fs@capt\floatc@plain
136 \def\@fs@pre{\setbox\@currbox\vbox{\hbadness10000
137 \moveleft3.4pt\vbox{\advance\hsize by6.8pt
138 \hrule \hbox to\hsize{\vrule\kern3pt
139 \vbox{\kern3pt\box\@currbox\kern3pt}\kern3pt\vrule}\hrule}}}%
140 \def\@fs@mid{\kern2pt}%
141 \def\@fs@post{}\let\@fs@iftopcapt\iffalse}

Before we finish, we set the float style to plain.
142 \floatstyle{plain}

11

Other float styles can be added without much ado. If there are many more float
styles, it should be worthwhile to invent a scheme similar to that used in Frank
Mittelbach’s theorem option in order to conserve space, i.e., put the float styles
into individual files that can be loaded on demand. I would like to hear from
people who define interesting float styles.

12

